Skip to main content
Log in

Criteria on Contractions for Entropic Discontinuities of Systems of Conservation Laws

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the contraction properties (up to shift) for admissible Rankine–Hugoniot discontinuities of \({n\times n}\) systems of conservation laws endowed with a convex entropy. We first generalize the criterion developed in (Serre and Vasseur, J l’Ecole Polytech 1, 2014), using the spatially inhomogeneous pseudo-distance introduced in (Vasseur, Contemp Math AMS, 2013). Our generalized criterion guarantees the contraction property for extremal shocks of a large class of systems, including the Euler system. Moreover, we introduce necessary conditions for contraction, specifically targeted for intermediate shocks. As an application, we show that intermediate shocks of the two-dimensional isentropic magnetohydrodynamics do not verify any of our contraction properties. We also investigate the contraction properties, for contact discontinuities of the Euler system, for a certain range of contraction weights. None of the results involve any smallness condition on the initial perturbation or on the size of the shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adimurthi, Goshal, Sh.S., Veerappa Gowda, G.D.: \({L^p}\) stability for entropy solutions of scalar conservation laws with strict convex flux. J. Differ. Equ. 256(10), 3395–3416 (2014)

  2. Bardos C., Golse F., Levermore C.D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63(1–2), 323–344 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bardos C., Golse F., Levermore C.D.: Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46(5), 667–753 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barker, B., Freistühler, H., Zumbrun, K.: Convex entropy, hopf bifurcation, and viscous and inviscid shock stability. Arch. Ration. Mech. Anal. 217(1), 309–372 (2015)

  5. Barker B., Humpherys J., Zumbrun K.: One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics. J. Differ. Equ. 249, 2175–2213 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Barker B., Lafitte O., Zumbrun K.: Existence and stability of viscous shock profiles for 2-d isentropic mhd with infinite electrical resistivity. Acta Math. Sci. Ser. B Engl. Ed. 30, 447–498 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berthelin F., Tzavaras A.E., Vasseur A.: From discrete velocity Boltzmann equations to gas dynamics before shocks. J. Stat. Phys. 135(1), 153–173 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Berthelin, F., Vasseur, A.: From kinetic equations to multidimensional isentropic gas dynamics before shocks. SIAM J. Math. Anal. 36(6), 1807–1835 (2005, electronic)

  9. Bressan A., Colombo R.: Unique solutions of \({2\times 2}\) conservation laws with large data. Indiana Univ. Math. J. 44(3), 677–725 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bressan A., Crasta G., Piccoli B.: Well-posedness of the Cauchy problem for \({n\times n}\) systems of conservation laws. Mem. Am. Math. Soc. 146(694), viii+134 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Bressan A., Liu T.-P., Yang T.: \({L^1}\) stability estimates for \({n\times n}\) conservation laws. Arch. Ration. Mech. Anal. 149(1), 1–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen G.-Q., Frid H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147(2), 89–118 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen G.-Q., Frid H.: Large-time behavior of entropy solutions of conservation laws. J. Differ. Equ. 152(2), 308–357 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chen G.-Q., Frid H., Li Y.: Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics. Commun. Math. Phys. 228(2), 201–217 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chen G.-Q., Rascle M.: Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws. Arch. Ration. Mech. Anal. 153(3), 205–220 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Choi K., Vasseur A.: Short-time stability of scalar viscous shocks in the inviscid limit by the relative entropy method. SIAM J. Math. Anal. 47, 1405–1418 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dafermos, C.: Entropy and the stability of classical solutions of hyperbolic systems of conservation laws. In Recent Mathematical Methods in Nonlinear wave Propagation (Montecatini Terme, 1994), Lecture Notes in Math., vol. 1640, pp. 48–69. Springer, Berlin, 1996

  18. Dafermos, C.: Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325. Springer, Berlin, 2000

  19. Dafermos C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70(2), 167–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. De Lellis C., Otto F., Westdickenberg M.: Structure of entropy solutions for multi-dimensional scalar conservation laws. Arch. Ration. Mech. Anal. 170(2), 137–184 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. DiPerna R.J.: Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28(1), 137–188 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Filippov A.F.: Differential equations with discontinuous right-hand side. Mat. Sb. (N.S.) 51(93), 99–128 (1960)

    MathSciNet  MATH  Google Scholar 

  23. Golse F., Saint-Raymond L.: The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Gués O., Métivier G., Williams M., Zumbrun K.: Existence and stability of noncharacteristic boundary layers for the compressible navier-stokes and viscous mhd equations. Arch. Ration. Mech. Anal. 197, 1–87 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kang, M.-J.: Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics. (preprint)

  26. Kang, M.-J., Vasseur, A.: \({L^2}\)-contraction for shock waves of scalar viscous conservation laws. Annales de l’Institut Henri Poincaré (C) : Analyse non linéaire. doi:10.1016/j.anihpc.2015.10.004.

  27. Kang M.-J., Vasseur A.: Asymptotic analysis of Vlasov-type equations under strong local alignment regime. Math. Model. Methods Appl. Sci. 25(11), 2153–2173 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kružkov S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)

    MathSciNet  Google Scholar 

  29. Kwon Y.-S.: Strong traces for degenerate parabolic-hyperbolic equations. Discrete Contin. Dyn. Syst. 25(4), 1275–1286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kwon Y.-S., Vasseur A.: Strong traces for solutions to scalar conservation laws with general flux. Arch. Ration. Mech. Anal. 185(3), 495–513 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lax P.D.: Hyperbolic systems of conservation laws. II. Comm. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  32. Leger N.: \({L^2}\) stability estimates for shock solutions of scalar conservation laws using the relative entropy method. Arch. Ration. Mech. Anal. 199(3), 761–778 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Leger N., Vasseur A.: Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal. 201(1), 271–302 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lewicka M., Trivisa K.: On the \({L^1}\) well posedness of systems of conservation laws near solutions containing two large shocks. J. Differ. Equ. 179(1), 133–177 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Lions, P.-L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal. 158(3), 173–193, 195–211 (2001)

  36. Liu T.-P., Ruggeri T.: Entropy production and admissibility of shocks. Acta Math. Appl. Sin. Engl. Ser. 19(1), 1–12 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu T.-P., Yang T.: \({L^1}\) stability for \({2\times 2}\) systems of hyperbolic conservation laws. J. Am. Math. Soc. 12(3), 729–774 (1999)

    Article  MATH  Google Scholar 

  38. Masmoudi N., Saint-Raymond L.: From the Boltzmann equation to the Stokes–Fourier system in a bounded domain. Commun. Pure Appl. Math. 56(9), 1263–1293 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mellet A., Vasseur A.: Asymptotic analysis for a Vlasov–Fokker–Planck/compressible Navier-Stokes system of equations. Commun. Math. Phys. 281(3), 573–596 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Métivier G., Zumbrun K.: Hyperbolic boundary value problems for symmetric systems with variable multiplicities. J. Differ. Equ. 211, 61–134 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Panov E.Y.: Existence of strong traces for generalized solutions of multidimensional scalar conservation laws. J. Hyperbolic Differ. Equ. 2(4), 885–908 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Panov E.Y.: Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperbolic Differ. Equ. 4(4), 729–770 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Saint-Raymond L.: Convergence of solutions to the Boltzmann equation in the incompressible Euler limit. Arch. Ration. Mech. Anal. 166(1), 47–80 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Serre D.: Oscillations non linéaires des systémes hyperboliques: méthodes et résultats qualitatifs. Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 351–417 (1991)

    Google Scholar 

  45. Serre D.: Systems of Conservation Laws I, II. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  46. Serre D.: Long-time stability in system of conservation laws, using relative entropy/energy. Arch. Ration. Mech. Anal. 219(2), 679–699 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Serre, D., Vasseur, A.: About the relative entropy method for hyperbolic systems of conservation laws. Contemp. Math. AMS (2015, to appear)

  48. Serre, D., Vasseur, A.: \({L^2}\)-type contraction for systems of conservation laws. J. l’Ecole Polytech. 1, 1–28 (2014)

  49. Temple B.: No \({L^1}\)-contractive metrics for systems of conservation laws. Trans. Am. Math. Soc. 288, 471–480 (1985)

    MathSciNet  MATH  Google Scholar 

  50. Texier B., Zumbrun K.: Entropy criteria and stability of extreme shocks: a remark on a paper of Leger and Vasseur. Proc. AMS 143(2), 749–754 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vasseur, A.: Relative entropy and contraction for extremal shocks of conservation laws up to a shift. Contemp. Math. AMS (2013, to appear)

  52. Vasseur A.: Time regularity for the system of isentropic gas dynamics with \({\gamma=3}\). Commun. Partial Differ. Equ. 24(11–12), 1987–1997 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vasseur A.: Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160(3), 181–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Vasseur, A.: Recent results on hydrodynamic limits. In Handbook of differential equations: evolutionary equations, vol. IV, Handb. Differ. Equ., pp. 323–376. Elsevier/North-Holland, Amsterdam, 2008

  55. Wagner D.: Equivalence of the euler and lagrangian equations of gas dynamics for weak solutions. J. Differ. Equ. 68, 118–136 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Yau H.-T.: Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22(1), 63–80 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Jin Kang.

Additional information

Communicated by A. Bressan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, MJ., Vasseur, A.F. Criteria on Contractions for Entropic Discontinuities of Systems of Conservation Laws. Arch Rational Mech Anal 222, 343–391 (2016). https://doi.org/10.1007/s00205-016-1003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1003-1

Keywords

Navigation