Skip to main content
Log in

Fourth-Moment Analysis for Wave Propagation in the White-Noise Paraxial Regime

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we consider the Itô–Schrödinger model for wave propagation in random media in the paraxial regime. We solve the equation for the fourth-order moment of the field in the regime where the correlation length of the medium is smaller than the initial beam width. In terms of applications we prove that the centered fourth-order moments of the field satisfy the Gaussian summation rule, we derive the covariance function of the intensity of the transmitted beam, and the variance of the smoothed Wigner transform of the transmitted field. The second application is used to explicitly quantify the scintillation of the transmitted beam and the third application to quantify the statistical stability of the Wigner transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailly F., Clouet J.-F., Fouque J.-P.: Parabolic and white noise approximation for waves in random media. SIAM J. Appl. Math. 56, 1445–1470 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bal G.:: On the self-averaging of wave energy in random media. SIAM Multiscale Model. Simul. 2, 398–420 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bal G., Pinaud O.: Dynamics of wave scintillation in random media. Commun. Partial Differ. Equ. 35, 1176–1235 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blomgren P., Papanicolaou G., Zhao H.: Super-resolution in time-reversal acoustics. J. Acoust. Soc. Am. 111, 230–248 (2002)

    Article  ADS  Google Scholar 

  5. Cartwright N.D.: A non-negative Wigner-type distribution. Physica 83A, 210–212 (1976)

    Article  ADS  Google Scholar 

  6. Cheng J.: Ghost imaging through turbulent atmosphere. Opt. Express 17, 7916–7917 (2009)

    Article  ADS  Google Scholar 

  7. Claerbout J.F.: Imaging the Earth’s Interior. Blackwell Scientific Publications, Palo Alto, 1985

  8. Dawson D., Papanicolaou G.: A random wave process. Appl. Math. Optim. 12, 97–114 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Hoop M., Sølna K.: Estimating a Green’s function from “field-field” correlations in a random medium. SIAM J. Appl. Math. 69, 909–932 (2009)

    MATH  Google Scholar 

  10. de Hoop M., Garnier J., Holman S.F., Sølna K.: Retrieval of a Green’s function with reflections from partly coherent waves generated by a wave packet using cross correlations. SIAM J. Appl. Math. 73, 493–522 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fannjiang A.C.: Self-averaging radiative transfer for parabolic waves. C. R. Acad. Sci. Paris Ser. I 342, 109–114 (2006)

  12. Fannjiang A.C.: Introduction to propagation, time reversal and imaging in random media. Multi-Scale Phenomena in Complex Fluids—Modeling, Analysis and Numerical Simulation. (Eds. Hou T.Y., Liu C. and Liu J.G.) World Scientific, Singapore, 2009

  13. Fante R.L.: Electromagnetic beam propagation in turbulent media. Proc. IEEE 63, 1669–1692 (1975)

    Article  ADS  Google Scholar 

  14. Feizulin Z.I., Kravtsov Yu.A.: Broadening of a laser beam in a turbulent medium. Radio Quantum Electron 10, 33–35 (1967)

    Article  ADS  Google Scholar 

  15. Fink M.: Time-Reversed Acoustics. Scientific American, November Issue, pp. 91–97 (1999)

  16. Fouque J.-P., Garnier J., Papanicolaou G., Sølna K.: Wave Propagation and Time Reversal in Randomly Layered Media. Springer, New York (2007)

    MATH  Google Scholar 

  17. Fouque J.-P., Papanicolaou G., Samuelides Y.: Forward and Markov approximation: the strong-intensity-fluctuations regime revisited. Waves Random Media 8, 303–314 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Furutsu K.: Statistical theory of wave propagation in a random medium and the irradiance distribution function. J. Opt. Soc. Am. 62, 240–254 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  19. Furutsu K., Furuhama Y.: Spot dancing and relative saturation phenomena of irradiance scintillation of optical beams in a random medium. Optica 20, 707–719 (1973)

    Article  ADS  Google Scholar 

  20. Garnier J., Papanicolaou G.: Passive sensor imaging using cross correlations of noisy signals in a scattering medium. SIAM J. Imaging Sci. 2, 396–437 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garnier J., Sølna K.: Random backscattering in the parabolic scaling. J. Stat. Phys. 131, 445–486 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Garnier J., Sølna K.: Coupled paraxial wave equations in random media in the white-noise regime. Ann. Appl. Probab. 19, 318–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Garnier J., Sølna K.: Scaling limits for wave pulse transmission and reflection operators. Wave Motion 46, 122–143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Garnier J., Sølna K.: Scintillation in the white-noise paraxial regime. Commun. Partial Differ. Equ. 39, 626–650 (2014)

    Article  MATH  Google Scholar 

  25. Gérard P., Markowich P.A., Mauser N.J., Poupaud F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. 50, 323–379 (1997)

    Article  MATH  Google Scholar 

  26. Gozani J.: Numerical solution of the fourth-order coherence function of a plane wave propagating in a two-dimensional Kolmogorovian medium. J. Opt. Soc. Am. A 2, 2144–2151 (1985)

    Article  ADS  Google Scholar 

  27. Ishimaru A.: Wave Propagation and Scattering in Random Media. Academic Press, San Diego (1978)

    Google Scholar 

  28. Katz O., Small E., Silberberg Y.: Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photonics 6, 549–553 (2012)

    Article  ADS  Google Scholar 

  29. Komorowski T., Peszat S., Ryzhik L.: Limit of fluctuations of solutions of Wigner equation. Commun. Math. Phys. 292, 479–510 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Komorowski T., Ryzhik L.: Fluctuations of solutions to Wigner equation with an Ornstein–Uhlenbeck potential. Discrete Contin. Dyn. Syst. Ser. B 17, 871–914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li C., Wang T., Pu J., Zhu W., Rao R.: Ghost imaging with partially coherent light radiation through turbulent atmosphere. Appl. Phys. B 99, 599–604 (2010)

    Article  ADS  Google Scholar 

  32. Manfredi G., Feix M.R.: Entropy and Wigner functions. Phys. Rev. E 62, 4665–4674 (2000)

    Article  ADS  Google Scholar 

  33. Mosk A.P., Lagendijk A., Lerosey G., Fink M.: Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012)

    Article  ADS  Google Scholar 

  34. Miyahara Y.: Stochastic evolution equations and white noise analysis. Carleton Mathematical Lecture Notes, Vol. 42. Ottawa, Canada, 1–80, 1982

  35. Papanicolaou G., Ryzhik L., Sølna K.: Statistical stability in time reversal. SIAM J. Appl. Math. 64, 1133–1155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Papanicolaou G., Ryzhik L., Sølna K.: Self-averaging from lateral diversity in the Itô–Schrödinger equation. SIAM Multiscale Model. Simul. 6, 468–492 (2007)

    Article  MATH  Google Scholar 

  37. Popoff S.M., Goetschy A., Liew S.F., Stone A.D., Cao H.: Coherent control of total transmission of light through disordered media. Phys. Rev. Lett. 112, 133903 (2014)

  38. Popoff S., Lerosey G., Fink M., Boccara A.C., Gigan S.: Image transmission through an opaque material. Nat. Commun. 1, 1–5 (2010)

    Article  Google Scholar 

  39. Reed I.S.: On a moment theorem for complex Gaussian processes. IRE Trans. Inform. Theory IT-8, 194–195 (1962)

  40. Ryzhik L., Keller J., Papanicolaou G.: Transport equations for elastic and other waves in random media. Wave Motion 24, 327–370 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shapiro J.H., Boyd R.W.: The physics of ghost imaging. Quantum Inf. Process. 11, 949–993 (2012)

    Article  MATH  Google Scholar 

  42. Strohbehn J.W. (ed.): Laser Beam Propagation in the Atmosphere. Springer, Berlin, 1978

  43. Tappert F.: The parabolic approximation method. Wave Propagation and Underwater Acoustics. (Eds. Keller J.B. and Papadakis J.S.) Springer, Berlin, 224–287, 1977

  44. Tatarskii V.I.: The Effect of Turbulent Atmosphere on Wave Propagation. U.S. Department of Commerce, TT-68-50464, Springfield, 1971

  45. Ucsinski B.J.: Analytical solution of the fourth-moment equation and interpretation as a set of phase screens. J. Opt. Soc. Am. A 2, 2077–2091 (1985)

    Article  ADS  Google Scholar 

  46. Valley G.C., Knepp D.L.: Application of joint Gaussian statistics to interplanetary scintillation. J. Geophys. Res. 81, 4723–4730 (1976)

    Article  ADS  Google Scholar 

  47. Newman J.A., Webb K.J.: Fourier magnitude of the field incident on a random scattering medium from spatial speckle intensity correlations. Opt. Lett. 37, 1136–1138 (2012)

    Article  ADS  Google Scholar 

  48. Newman J.A., Webb K.J.: Imaging optical fields through heavily scattering media. Phys. Rev. Lett. 113, 263903 (2014)

  49. Vellekoop I.M., Lagendijk A., Mosk A.P.: Exploiting disorder for perfect focusing. Nat. Photonics 4, 320–322 (2010)

    Article  Google Scholar 

  50. Vellekoop I.M., Mosk A.P.: Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007)

    Article  ADS  Google Scholar 

  51. Vellekoop I.M., Mosk A.P.: Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008)

    Article  ADS  Google Scholar 

  52. Whitman A.M., Beran M.J.: Two-scale solution for atmospheric scintillation. J. Opt. Soc. Am. A 2, 2133–2143 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  53. Yakushkin I.G.: Moments of field propagating in randomly inhomogeneous medium in the limit of saturated fluctuations. Radiophys. Quantum Electron. 21, 835–840 (1978)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josselin Garnier.

Additional information

Communicated by F. Otto

This work is partly supported by AFOSR Grant # FA9550-11-1-0176.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garnier, J., Sølna, K. Fourth-Moment Analysis for Wave Propagation in the White-Noise Paraxial Regime. Arch Rational Mech Anal 220, 37–81 (2016). https://doi.org/10.1007/s00205-015-0926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0926-2

Keywords

Navigation