Skip to main content
Log in

On a Model for Mixture Flows: Derivation, Dissipation and Stability Properties

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We propose a new model describing mixture flows. The non linear system couples heterogeneous Navier–Stokes equations with a constraint on the mean volume velocity of the flow. The PDE system is obtained from a more microscopic viewpoint, involving a Vlasov-like equation describing the disperse phase, through a certain hydrodynamic limit. The model has remarkable dissipation properties, inherited from the structure of the fluid-kinetic description. Based on these properties, together with additional estimates that can be obtained in the one-dimension framework, we establish the stability of weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews M.J., O’Rourke P.J.: The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int. J. Multiphase Flow 22(2), 379–402 (1996)

    Article  MATH  Google Scholar 

  2. Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, vol. 22. North Holland, 1990

  3. Baranger C., Desvillettes L.: Coupling Euler and Vlasov equations in the context of sprays: local smooth solutions. J. Hyperbolic Differ. Equ. 3(1), 1–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beirao da Veiga H.: Diffusion on viscous fluids. Existence and asymptotic properties of solutions. Annali Scuola Norm. Sup. Pisa, Classe di Scienze 10, 341–355 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Berthelin, F., Bouchut, F.: Weak solutions for a hyperbolic system with unilateral constraint and mass loss. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(6), 975–997 (2003). doi:10.1016/S0294-1449(03)00012-X

  6. Bouchut, F., Brenier, Y., Cortes, J., Ripoll, J.F.: A hierarchy of models for two-phase flows. J. Nonlinear Sci. 10(6), 639–660 (2000). doi:10.1007/s003320010006

  7. Boudin, L., Desvillettes, L., Grandmont, C., Moussa, A.: Global existence of solutions for the coupled Vlasov and Navier–Stokes equations. Differ. Integr. Equ. 22(11–12) (2009)

  8. Brady J.F., Bossis G.: Stokesian dynamics. Ann. Rev. Fluid Mech. 20, 111–157 (1998)

    Article  ADS  Google Scholar 

  9. Brenner, H.: Unsolved problems in fluid mechanics: On the historical misconception of fluid velocity as mass motion, rather than volume motion (2003). Communication for the 100th anniversary of the Ohio State Chemical Engineering Department

  10. Brenner, H.: Navier–Stokes revisited. Phys. A 349(1–2), 60–132 (2005). doi:10.1016/j.physa.2004.10.034

  11. Brenner H.: Bi-velocity hydrodynamics: multicomponent fluids. Int. J. Eng. Sci. 47, 902–929 (2009)

    Article  MATH  Google Scholar 

  12. Brenner H.: Diffuse volume transport in fluids. Phys. A 389, 4026–4045 (2010)

    Article  Google Scholar 

  13. Bresch D., Desjardins B.: Sur un modèle de Saint-Venant visqueux et sa limite quasi-gèostrophique. C. R. Math. Acad. Sci. Paris 335(12), 1079–1084 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bresch D., Desjardins B.: Some diffusive capillary models of Korteweg type. C. R. Math. Acad. Sci. Paris, Section Mécanique 332(11), 881–886 (2004)

    MATH  Google Scholar 

  15. Bresch D., Desjardins B.: On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier–Stokes models. J. Math. Pures Appl. 86, 362–368 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bresch, D., Desjardins, B.: On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87(1), 57–90 (2007). doi:10.1016/j.matpur.2006.11.001

  17. Bresch D., Desjardins B., Lin C.K.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commun. Partial Differ. Equ. 28(3), 843–868 (2008)

    MathSciNet  Google Scholar 

  18. Bresch D., Essoufi E.H., Sy M.: Effect of density dependent viscosities on multiphasic incompressible fluid models. J. Math. Fluid Mech. 9(3), 377–397 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Calgaro C., Creusé E., Goudon T.: Modeling and simulation of mixture flows: Application to powder–snow avalanches. Comput. Fluids 107, 100–122 (2015)

    Article  MathSciNet  Google Scholar 

  20. Carrillo J.A., Duan R., Moussa A.: Global classical solutions close to equilibrium to the Vlasov–Euler–Fokker–Planck system. AIMS Kinetic Relat. Models 4, 227–258 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Carrillo J.A., Goudon T.: Stability and asymptotic analysis of a fluid-particle interaction model. Commun. Partial Differ. Equ. 31(9), 1349–1379 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Carrillo J.A., Goudon T., Lafitte P.: Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes. J. Comput. Phys. 227(16), 7929–7951 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Carrillo J.A., Karper T., Trivisa K.: On the dynamics of a fluid-particle interaction model: the bubbling regime. Nonlinear Anal. TMA 74(8), 2778–2801 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chandrasekhar S.: Brownian motion, dynamical friction, and stellar dynamics. Rev. Mod. Phys. 21(3), 383–388 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Danchin, R., Liao, X.: On the well-posedness of the full low-Mach number limit system in general critical Besov spaces. Commun. Contemp. Math. 14(3) (2012). Article # 1250022

  26. Desjardins B., Esteban M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146(1), 59–71 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Desvillettes L., Golse F., Ricci V.: The mean-field limit for solid particles in a Navier–Stokes flow. J. Stat. Phys. 131(5), 941–967 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Dutykh, D., Acary-Robert, C., Bresch, D.: Mathematical modeling of powder-snow avalanche flows. Stud. Appl. Math. 127(1), 38–66 (2011). doi:10.1111/j.1467-9590.2010.00511.x

  29. Etienne, J.: Simulation numérique directe de nuages aérosols denses sur des pentes; application aux avalanches de neige poudreuse. Ph.D. thesis, Institut National Polytechnique de Grenoble, 2004

  30. Etienne, J., Saramito, P., Hopfinger, E.: Numerical simulations of dense clouds on steep slopes: application to powder-snow avalanches. Ann. Glaciol. 38, 379–383(5) (2004). Presented at IGS International Symposium on Snow and Avalanches, Davos, 2–6 June 2003

  31. Feireisl, E., Vasseur, A.: New perspectives in fluid dynamics: Mathematical analysis of a model proposed by Howard Brenner. New Directions in Mathematical Fluid Mechanics. The Alexander V. Kazhikhov Memorial Volume (Eds. A.V. Fursikov, G.P. Galdi, V.V. Pukhnachev) Advances in Mathematical Fluid Mechanics, pp. 153–179. Springer, Berlin (2010)

  32. Franchi F., Straughan B.: A comparison of Graffi and Kazhikov–Smagulov models for top heavy pollution instability. Adv. Water Resour. 24, 585–594 (2001)

    Article  ADS  Google Scholar 

  33. Garzo V., Tenetti S., Subramaniam S., Hrenya C.M.: Enskog kinetic theory for monodisperse gas–fluid flows. J. Fluid Mech. 712, 129–168 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Goudon, T.: Intégration; intégrale de Lebesgue et introduction à l’analyse fonctionnelle. Références Sciences. Ellipses, 2011

  35. Goudon T., Jabin P.E., Vasseur A.: Hydrodynamic limit for the Vlasov–Navier–Stokes equations. I. Light particles regime. Indiana Univ. Math. J. 53(6), 1495–1515 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Goudon T., Jabin P.E., Vasseur A.: Hydrodynamic limit for the Vlasov–Navier–Stokes equations. II. Fine particles regime. Indiana Univ. Math. J. 53(6), 1517–1536 (2004)

    Article  MathSciNet  Google Scholar 

  37. Goudon T., Moussa A., He L., Zhang P.: The Navier–Stokes–Vlasov–Fokker–Planck system near equilibrium. SIAM J. Math. Anal. 42(5), 2177–2202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Graffi D.: Il teorema di unicitá per i fluidi incompressibili, perfetti, eterogenei. Rev. Unione Mat. Argentina 17, 73–77 (1955)

    MathSciNet  Google Scholar 

  39. Guermond J.L., Popov B.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74(2), 284–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hamdache K.: Global existence and large time behaviour of solutions for the Vlasov–Stokes equations. Japan J. Ind. Appl. Math. 15, 51–74 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hoff D., Smoller J.: Non-formation of vacuum states for compressible Navier–Stokes equations. Commun. Math. Phys. 216, 255–276 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Joseph, D.D., Renardy, Y.Y.: Fundamentals of two-fluid dynamics. Part II: Lubricated Transport, Drops and Miscible Liquids, Interdisciplinary Applied Mathematics, vol. 3. Springer, New York, 1993. Mathematical theory and applications

  43. Kazhikhov A.V., Smagulov S.: The correctness of boundary value problems in a diffusion model in an inhomogeneous fluid. Sov. Phys. Dokl. 22, 249–250 (1977)

    ADS  MATH  Google Scholar 

  44. Liao, X.: Quelques résultats mathématiques sur les gaz à faible nombre de Mach. Ph.D. thesis, Université Paris-Est, 2013

  45. Liao X.: A global existence result for a zero Mach number system. J. Math. Fluid Mech. 16(1), 77–103 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Lin, Z., Thiffeault, J.L., Childress, S.: Stirring by squirmers. J. Fluid Mech. 669, 167–177. (2011)

  47. Lions, P.L., Masmoudi, N.: On a free boundary barotropic model. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(3), 373–410 (1999). doi:10.1016/S0294-1449(99)80018-3

  48. Lun, C.K.K. Savage, S.B.: Kinetic theory for inertia flows of dilute turbulent gas-solids mixtures. In: Granular Gas Dynamics, Lect. Notes in Phys., vol. 624, pp. 267–289. Springer, Berlin, 2003

  49. Mellet A., Vasseur A.: Global weak solutions for a Vlasov–Fokker–Planck/Navier–Stokes system of equations. Math. Mod. Meth. Appl. Sci. 17(7), 1039–1063 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mellet, A., Vasseur, A.: Existence and uniqueness of global strong solutions for one-dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 39(4), 1344–1365 (2007/2008). doi:10.1137/060658199

  51. Mellet A., Vasseur A.: Asymptotic analysis for a Vlasov–Fokker–Planck/ compressible Navier–Stokes system of equations. Commun. Math. Phys. 281(3), 573–596 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Mellet A., Vasseur A.: Asymptotic analysis for a Vlasov–Fokker–Planck/ compressible Navier–Stokes system of equations. Commun. Math. Phys. 281, 573–596 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Mills, A.F.: Comment on: “Navier–Stokes revisited” [Phys. A 349 (2005), no. 1–2, 60132; mr2120925] by H. Brenner. Phys. A 371(2), 256–259 (2006)

  54. O’Rourke, P.J.: Collective drop effects on vaporizing liquid sprays. Ph.D. thesis, Princeton University, NJ, 1981

  55. Patankar N.A., Joseph D.D.: Lagrangian numerical simulation of particulate flows. Int. J. Multiphase Flow 27, 1685–1706 (2001)

    Article  MATH  Google Scholar 

  56. Patankar N.A., Joseph D.D.: Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach. Int. J. Multiphase Flow 27, 1659–1684 (2001)

    Article  MATH  Google Scholar 

  57. Rajagopal, K.R., Tao, L.: Mechanics of mixtures, Series on Advances in Math. for Appl. Sci., vol. 35. World Scientific, 1985

  58. Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications, Springer Series in Synergetics, vol. 18. Springer, Berlin, 1989

  59. Rudin, W.: Real and Complex Analysis. McGraw-Hill Book Company, 1987

  60. Saint Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation, Lect. Notes in Math., vol. 1971. Springer, Berlin, 2009

  61. San Martin J., Starovoitov V., Tucsnak M.: Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161, 113–147 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. Secchi P.: On the initial value problem for the equations of motion of viscous incompressible fluids in the presence of diffusion. Boll. Un. Mat. Ital. B (6) 1(3), 1117–1130 (1982)

    MathSciNet  MATH  Google Scholar 

  63. Secchi, P.: On the motion of viscous fluids in the presence of diffusion. SIAM J. Math. Anal. 19(1), 22–31 (1988). doi:10.1137/0519002

  64. Shelukhin, V.V.: On the structure of generalized solutions of the one-dimensional equations of a polytropic viscous gas. Prikl. Mat. Mekh. 48(6), 912–920 (1984). doi:10.1016/0021-8928(84)90031-5

  65. Shelukhin V.V.: A shear flow problem for the compressible Navier–Stokes equations. Int. J. Non-Linear Mech. 33(2), 247–257 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Simon, J.: Compact sets in L p(0, T; B). Ann. Mat. Pura Appl. CXLVI, 65–96 (1987)

  67. Smoluchowski, M.: On the practical applicability of Stokes’ law of resistance, and the modifications of it required in certain cases. Vth International Congress of Mathematics, 1912

  68. Snider D.M., O’Rourke P.J., Andrews M.J.: Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows. Int. J. Multiphase Flow 24, 1359–1382 (1998)

    Article  MATH  Google Scholar 

  69. Vaigant V.A.: Nonhomogeneous boundary value problems for equations of a viscous heat-conducting gas. Dinamika Sploshn. Sredy 97, 3–21 (1990)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Goudon.

Additional information

Communicated by L. Saint-Reymond

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudon, T., Vasseur, A. On a Model for Mixture Flows: Derivation, Dissipation and Stability Properties. Arch Rational Mech Anal 220, 1–35 (2016). https://doi.org/10.1007/s00205-015-0925-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0925-3

Keywords

Navigation