Skip to main content
Log in

Scattering for Radial, Semi-Linear, Super-Critical Wave Equations with Bounded Critical Norm

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the focusing cubic wave equation in 1 + 5 dimensions with radial initial data as well as the one-equivariant wave maps equation in 1+3 dimensions with the model target manifolds \({\mathbb{S}^3}\) and \({\mathbb{H}^3}\). In both cases the scaling for the equation leaves the \({\dot{H}^{\frac{3}{2}} \times \dot{H}^{\frac{1}{2}}}\)-norm of the solution invariant, which means that the equation is super-critical with respect to the conserved energy. Here we prove a conditional scattering result: if the critical norm of the solution stays bounded on its maximal time of existence, then the solution is global in time and scatters to free waves as \({t \to \pm \infty}\). The methods in this paper also apply to all supercritical power-type nonlinearities for both the focusing and defocusing radial semi-linear equation in 1+5 dimensions, yielding analogous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahouri, P., Gérard.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121, 131–175 (1999)

  2. Bizoń P.: Equivariant self-similar wave maps from Minkowski spacetime into 3-sphere. Commun. Math. Phys. 215(1), 45–56 (2000)

    Article  MATH  ADS  Google Scholar 

  3. Bizoń, P., Maison, D., Wasserman, A.: Self-similar solutions of semilinear wave equations with a focusing nonlinearity. Nonlinearity, 20(9), 2061–2074 (2007)

  4. Bulut, A.: The defocusing cubic nonlinear wave equation in the energy-supercritical regime. In Recent Advances in Harmonic Analysis and Partial Differential Equations, volume 581 of Contemp. Math., pp. 1–11. Amer. Math. Soc., Providence, RI (2012)

  5. Bulut A.: Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation. J. Funct. Anal., 263(6), 1609–1660 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cazenave, T., Shatah, J., Tahvildar-Zadeh, A.S.: Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang–Mills fields. Ann. Inst. H. Poincaré Phys. Théor. 68(3), 315–349 (1998)

  7. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb{R}^3}\). Ann. Math. (2), 167(3), 767–865 (2008)

  8. Collot, C.: Type II blow up for the energy supercritical wave equation. Preprint, 07 2014

  9. Dodson, B.: Global well-posedness and scattering for the defocusing, mass-critical generalized KdV equation. Preprint, 04 2013

  10. Dodson, B., Lawrie, A.: Scattering for the radial 3d cubic wave equation. Preprint, 03 2014

  11. Donninger R.: Nonlinear stability of self-similar solutions for semilinear wave equations. Commun. Partial Differ. Equ. 35(4), 669–684 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Donninger R.: On stable self-similar blowup for equivariant wave maps. Commun. Pure Appl. Math. 64(8), 1095–1147 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Donninger, R., Huang, M., Krieger, J., Schlag, W.: Exotic blowup solutions for the u 5 focusing wave equation in \({\mathbb{R}^3}\). Michigan. Math. J. 63(3), 451–501 (2014)

  14. Donninger R., Krieger J.: Nonscattering solutions and blowup at infinity for the critical wave equation. Math. Ann. 357(1), 89–163 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Donninger, R., Schörkhuber, B.: Stable blow up dynamics for energy supercritical wave equations. Trans. Am. Math. Soc. 366(4), 2167–2189 (2014)

  16. Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small radial type II blow-up solutions of the energy critical wave equation. J. Eur Math. Soc. (JEMS), 13(3), 533–599 (2011)

  17. Duyckaerts, T., Kenig, C., Merle, F.: Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal. 22(3), 639–698 (2012)

  18. Duyckaerts, T., Kenig, C., Merle, F.: Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case. J. Eur. Math. Soc. (JEMS) 14(5), 1389–1454 (2012)

  19. Duyckaerts, T., Kenig, C., Merle, F.: Classification of radial solutions of the focusing, energy critical wave equation. Camb. J. Math., 1(1), 75–144 (2013)

  20. Duyckaerts, T., Kenig, C., Merle, F. Scattering for radial, bounded solutions of focusing supercritical wave equations. Int. Math. Res. Not. IMRN (1), 224–258 (2014)

  21. Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP. Art ID rpn002, 67 (2008)

  22. Eskauriaza, L., Serëgin, G.A., Šverak, V.: \({L_{3,\infty}}\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58(2(350)), 3–44 (2003)

  23. Grillakis, M.G.: Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity. Ann. Math. (2) 132(3), 485–509 (1990)

  24. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

  25. Kenig, C., Lawrie, A., Schlag, W.: Relaxation of wave maps exterior to a ball to harmonic maps for all data. Geom. Funct. Anal. 24(2), 610–647 (2014)

  26. Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

  27. Kenig C., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kenig, C., Merle, F.: Scattering for \({\dot H^{1/2}}\) bounded solutions to the cubic, defocusing NLS in 3 dimensions. Trans. Am. Math. Soc. 362(4), 1937–1962 (2010)

  29. Kenig, C., Merle, F.: Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications. Am. J. Math. 133(4), 1029–1065 (2011)

  30. Kenig C., Merle F.: Radial solutions to energy supercritical wave equations in odd dimensions. Discret. Contin. Dyn. Syst. 31(4), 1365–1381 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Killip, R., Kwon, S., Shao, S., Visan, M.: On the mass-critical generalized KdV equation. Discret. Contin. Dyn. Syst. 32(1), 191–221 (2012)

  32. Killip, R., Tao, T., Visan, M.: The cubic nonlinear Schrödinger equation in two dimensions with radial data. J. Eur. Math. Soc. (JEMS) 11(6), 1203–1258 (2009)

  33. Killip, R., Visan, M.: Energy-supercritical NLS: critical \({\dot H^s}\)-bounds imply scattering. Commun. Partial Differ. Equ. 35(6), 945–987 (2010)

  34. Killip R., Visan M.: The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher. Am. J. Math. 132(2), 361–424 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Killip R., Visan M.: The defocusing energy-supercritical nonlinear wave equation in three space dimensions. Trans. Am. Math. Soc., 363(7), 3893–3934 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Killip, R., Visan, M.: The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions. Proc. Am. Math. Soc. 139(5), 1805–1817 (2011)

  37. Killip, R., Vişan, M.: Nonlinear Schrödinger equations at critical regularity. In Evolution Equations, volume 17 of Clay Math. Proc., pp. 325–437. Amer. Math. Soc., Providence, RI, 2013

  38. Krieger, J., Nakanishi, K., Schlag, W.: Global dynamics away from the ground state for the energy-critical nonlinear wave equation. Am. J. Math. 135(4), 935–965 (2013)

  39. Krieger J., Nakanishi K., Schlag W.: Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discret. Contin. Dyn. Syst. 33(6), 2423–2450 (2013)

    MATH  MathSciNet  Google Scholar 

  40. Krieger, J., Nakanishi, K., Schlag, W.: Threshold phenomenon for the quintic wave equation in three dimensions. Commun. Math. Phys. 327(1), 309–332 (2014)

  41. Krieger, J., Schlag, W.: Full range of blow up exponents for the quintic wave equation in three dimensions. Preprint, 12 (2012)

  42. Krieger, J., Schlag, W.: Large global solutions for energy supercritical nonlinear wave equations on \({\mathbb{R}^{3+1}}\). Preprint (2014)

  43. Krieger, J., Schlag, W., Tataru, D.: Slow blow-up solutions for the \({H^1(\mathbb{R}^3)}\) critical focusing semilinear wave equation. Duke Math. J. 147(1), 1–53 (2009)

  44. Lawrie, A.: Conditional global existence and scattering for a semi-linear Skyrme equation with large data. To appear in Commun. Math. Phys., preprint (2013)

  45. Lindblad, H., Sogge, C.D. On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130(2), 357–426 (1995)

  46. Merle, F., Raphael, P., Rodnianski, I.: Type II blow up for the energy supercritical NLS. Preprint, 07 (2014)

  47. Merle F., Zaag H.: Determination of the blow-up rate for the semilinear wave equation. Am. J. Math. 125(5), 1147–1164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Merle F., Zaag H.: Determination of the blow-up rate for a critical semilinear wave equation. Math. Ann. 331(2), 395–416 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  49. Shatah, J.: Weak solutions and development of singularities of the SU(2) σ-model. Commun. Pure Appl. Math. 41(4), 459–469 (1988)

  50. Shatah, J., Struwe, M.: Geometric Wave Equations. Courant Lecture notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York. American Mathematical Society, Providence, RI (1998)

  51. Shen, R.: On the energy subcritical nonlinear wave equation with radial data for 3 < p < 5. Preprint (2012)

  52. Sogge, C.D.: Lectures on Non-Linear Wave Equations 2nd edn. International Press, Boston, MA (2008)

  53. Struwe, M.: Globally regular solutions to the u 5 Klein–Gordon equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15(3), 495–513 (1989), 1988

  54. Tao, T.: Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Int. Math. Res. Notices (6), 299–328 (2001)

  55. Tao, T.: Nonlinear Dispersive Equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis

  56. Tao, T.: A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations. Dyn. Partial Differ. Equ. 4(1), 1–53 (2007)

  57. Tao, T., Visan, M., Zhang, X.: Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions. Duke Math. J. 140(1), 165–202 (2007)

  58. Tao, T., Visan, M., Zhang, X.: Minimal-mass blowup solutions of the mass-critical NLS. Forum Math. 20(5), 881–919 (2008)

  59. Turok N., Spergel D.: Global texture and the microwave background. Phys. Rev. Lett. 64(23), 2736–2739 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Lawrie.

Additional information

Communicated by V. Šverák

Support of the National Science Foundation, DMS-1103914 for the first author, and DMS-1302782 for the second author, is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodson, B., Lawrie, A. Scattering for Radial, Semi-Linear, Super-Critical Wave Equations with Bounded Critical Norm. Arch Rational Mech Anal 218, 1459–1529 (2015). https://doi.org/10.1007/s00205-015-0886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0886-6

Keywords

Navigation