Skip to main content
Log in

On Global Multidimensional Supersonic Flows with Vacuum States at Infinity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the global existence and stability of a smooth supersonic flow with vacuum state at infinity in a three-dimensional infinitely long divergent nozzle. The flow is described by a three-dimensional steady potential equation, which is multi-dimensional quasilinear hyperbolic (but degenerate at infinity) with respect to the supersonic direction, and whose linearized part admits the form \({{\partial_t^2-\frac{1}{(1+t)^{2(\gamma-1)}}(\partial_1^2+\partial_2^2)+\frac{2(\gamma-1)}{1+t}\partial_t}}\) for \({{1 < \gamma < 2}}\). From the physical point of view, due to the expansive geometric property of the divergent nozzle and the mass conservation of gases, the moving gases in the nozzle will gradually become rarefactive and tend to vacuum states at infinity, which implies that such a smooth supersonic flow should be globally stable for small perturbations since there are no strong resulting compressions in the motion of the flow. We will confirm such a global stability phenomenon by rigorous mathematical proofs and further show that there do not exist vacuum domains in any finite parts of the nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: Temps de vie des solutions régulières des équations d’Euler compressibles axisymétriques en dimension deux. Invent. Math. 111(3), 627–670 (1993)

  2. Alinhac S.: Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions. II. Acta Math 182(1), 1–23 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Changshou L.: Interpolation inequalities with weights. Commun. Partial Differ. Equ. 11(14), 1515–1538 (1986)

    Article  Google Scholar 

  4. Chao-Jiang, X., Tong, Y.: Local existence with physical vacuum boundary condition to Euler equations with damping. J. Differ. Equ. 210(1), 217–231 (2005)

  5. Chemin, J.Y.: Dynamique des gaz à masse totale finie. Asymptotic Anal. 3(3), 215–220 (1990)

  6. Christodoulou D.: Global solutions of nonlinear hyperbolic equations for small initial data. Commun. Pure Appl. Math. 39(2), 267–282 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courant, R., Friedrichs, K.O.: Supersonic flow and shock waves. Interscience Publishers, New York, 1948

  8. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum. Commun. Pure Appl. Math. 64(3), 328–366 (2011)

  9. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206(2), 515–616 (2012)

  10. D’Abbicco, M., Lucente, S., Reissig, M.: Semi-linear wave equations with effective damping. Chin. Ann. Math. Ser. B 34(3), 345–380 (2013)

  11. Godin, P.: The lifespan of a class of smooth spherically symmetric solutions of the compressible Euler equations with variable entropy in three space dimensions. Arch. Ration. Mech. Anal. 177(3), 479–511 (2005)

  12. Godin P.: Global shock waves in some domains for the isentropic irrotational potential flow equations. Commun. Partial Differ. Equ. 22, 1929–1997 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grassin M.: Global smooth solutions to Euler equations for a perfect gas. Indiana Univ. Math. J. 47(4), 1397–1432 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Huicheng, Y.: Formation and construction of a shock wave for 3-D compressible Euler equations with the spherical initial data. Nagoya Math. J. 175, 125–164 (2004)

  15. Jang, J., Masmoudi, N.: Well-posedness for compressible Euler equations with physical vacuum singularity. Commun. Pure Appl. Math. 62(10), 1327–1385 (2009)

  16. Jang, J., Masmoudi, N.: Well-posedness of compressible Euler equations in a physical vacuum. Commun. Pure Appl. Math. 68(1), 61–111 (2015)

  17. Jun, L., Witt, I., Huicheng, Y.: Global multidimensional shock waves for 2-D and 3-D unsteady potential flow equations. arXiv:1310.3470 (2013)

  18. Jun, L., Zhouping, X., Huicheng, Y.: Transonic shocks for the full compressible Euler system in a general two-dimensional de Laval nozzle. Arch. Ration. Mech. Anal. 207(2), 533–581 (2013)

  19. Klainerman, S.: The null condition and global existence to nonlinear wave equations. Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), pp. 293–326. In: Lectures in Applied Mathematics, vol. 23. American Mathematical Society, Providence, 1986

  20. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. In: Applied Mathematical Sciences, vol. 53. Springer, New York, 1984

  21. Makino, T., Ukai, S., Kawashima, S.: Sur la solution à support compact de l’équations d’Euler compressible. Jpn. J. Appl. Math. 3(2), 249–257 (1986)

  22. Rammaha, M.: Formation of singularities in compressible fluids in two-space dimensions. Proc. Am. Math. Soc. 107, 705–714 (1989)

  23. Serre, D.: Solutions classiques globales des équations d’Euler pour un fluide parfait compressible. Ann. Inst. Fourier (Grenoble) 47(1), 139–153 (1997)

  24. Tai-Ping, L., Zhouping, X., Tong, Y.: Vacuum states for compressible flow. Discrete Contin. Dyn. Syst. 4(1), 1–32 (1998)

  25. Tong, Y.: Singular behavior of vacuum states for compressible fluids. J. Comput. Appl. Math. 190(1–2), 211–231 (2006)

  26. Wirth, J.: Wave equations with time-dependent dissipation. I. Non-effective dissipation. J. Differ. Equ. 222(2), 487–514 (2006)

  27. Wirth J.: Wave equations with time-dependent dissipation. II. Effective dissipation. J. Differ. Equ. 232(1), 74–103 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Zhouping X.: Blowup of smooth solutions to the compressible Navier–Stokes equation with compact density. Commun. Pure Appl. Math. 51(3), 229–240 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Huicheng.

Additional information

Communicated by F. Lin

X. Gang was supported by the National Natural Science Foundation of China (No. 11101190) and Natural Science Fundamental Research Project of Jiangsu Colleges (No. 10KLB110002).

Y. Huicheng was supported by the NSFC (No. 11025105) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gang, X., Huicheng, Y. On Global Multidimensional Supersonic Flows with Vacuum States at Infinity. Arch Rational Mech Anal 218, 1189–1238 (2015). https://doi.org/10.1007/s00205-015-0878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0878-6

Keywords

Navigation