Skip to main content
Log in

Solitary Water Waves of Large Amplitude Generated by Surface Pressure

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider exact nonlinear solitary water waves on a shear flow with an arbitrary distribution of vorticity. Ignoring surface tension, we impose a non-constant pressure on the free surface. Starting from a uniform shear flow with a flat free surface and a supercritical wave speed, we vary the surface pressure and use a continuation argument to construct a global connected set of symmetric solitary waves. This set includes waves of depression whose profiles increase monotonically from a central trough where the surface pressure is at its lowest, as well as waves of elevation whose profiles decrease monotonically from a central crest where the surface pressure is at its highest. There may also be two waves in this connected set with identical surface pressure, only one of which is a wave of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asavanant J., Vanden-Broeck J.-M.: Free-surface flows past a surface-piercing object of finite length. J. Fluid Mech. 273, 109–124 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Beale J.T.: Water waves generated by a pressure disturbance on a steady stream. Duke Math. J. 47(2), 297–323 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Craig W., Sternberg P.: Symmetry of solitary waves. Commun. Partial Differ. Equ. 13(5), 603–633 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin A., Strauss W.: Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57(4), 481–527 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin A., Strauss W.: Rotational steady water waves near stagnation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365(1858), 2227–2239 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Constantin A., Strauss W.: Periodic traveling gravity water waves with discontinuous vorticity. Arch. Ration. Mech. Anal. 202(1), 133–175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubreil-Jacotin M.L.: Sur la détermination rigoureuse des ondes permanentes périodiques d’amplitude finie. J. de Math. 13, 217–289 (1934)

    Google Scholar 

  9. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin, 2001. Reprint of the 1998 edition

  10. Groves M.D., Wahlén E.: Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity. Phys. D 237(10–12), 1530–1538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Healey T.J., Simpson H.C.: Global continuation in nonlinear elasticity. Arch. Ration. Mech. Anal. 143(1), 1–28 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hur V.M.: Exact solitary water waves with vorticity. Arch. Ration. Mech. Anal. 188(2), 213–244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hur V.M.: Symmetry of solitary water waves with vorticity. Math. Res. Lett. 15(3), 491–509 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Kielhöfer, H.: Bifurcation Theory: An Introduction with Applications to PDEs. Applied Mathematical Sciences, vol. 156. Springer, New York, 2004

  15. Kuznetsov, N., Maz’ya, V., Vainberg, B.: Linear Water Waves: A Mathematical Approach. Cambridge University Press, Cambridge, 2002

  16. Lieberman G.M.: Two-dimensional nonlinear boundary value problems for elliptic equations. Trans. Am. Math. Soc. 300(1), 287–295 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mielke A.: Steady flows of inviscid fluids under localized perturbations. J. Differ. Equ. 65(1), 89–116 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Mielke A.: Reduction of quasilinear elliptic equations in cylindrical domains with applications. Math. Methods Appl. Sci. 10(1), 51–66 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Pagani C.D., Pierotti D.: Exact solution of the wave-resistance problem for a submerged cylinder. I. Linearized theory. Arch. Ration. Mech. Anal. 149(4), 271–288 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pagani C.D., Pierotti D.: Exact solution of the wave-resistance problem for a submerged cylinder. II. The non-linear problem. Arch. Ration. Mech. Anal. 149(4), 289–327 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pagani C.D., Pierotti D.: On solvability of the nonlinear wave resistance problem for a surface-piercing symmetric cylinder. SIAM J. Math. Anal. 32(1), 214–233 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pagani C.D., Pierotti D.: The forward motion of an unsymmetric surface-piercing cylinder: the solvability of a nonlinear problem in the supercritical case. Q. J. Mech. Appl. Math. 54(1), 85–106 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pagani C.D., Pierotti D.: The subcritical motion of a semisubmerged body: solvability of the free boundary problem. SIAM J. Math. Anal. 36(1), 69–93 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Părău E., Vanden-Broeck J.-M.: Nonlinear two- and three-dimensional free surface flows due to moving disturbances. Eur. J. Mech. B Fluids 21(6), 643–656 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun S.M., Shen M.C.: Exact theory of secondary supercritical solutions for steady surface waves over a bump. Phys. D 67(1–3), 301–316 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stoker, J.J.: Water waves: The mathematical theory with applications. Pure and Applied Mathematics, vol. IV, pp. xxviii + 567. Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957

  27. Thomson W.: On ship waves. Proc. Inst. Mech. Eng. 38(1), 409–434 (1887)

    Article  Google Scholar 

  28. Varvaruca E.: On the existence of extreme waves and the Stokes conjecture with vorticity. J. Differ. Equ. 246(10), 4043–4076 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Vanden-Broeck J.-M., Keller J.B.: Surfing on solitary waves. J. Fluid Mech. 198, 115–125 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Volpert, V., Volpert, A.: Properness and topological degree for general elliptic operators. Abstr. Appl. Anal. (3), 129–181 (2003)

  31. Wheeler M.H.: Large-amplitude solitary water waves with vorticity. SIAM J. Math. Anal. 45(5), 2937–2994 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miles H. Wheeler.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wheeler, M.H. Solitary Water Waves of Large Amplitude Generated by Surface Pressure. Arch Rational Mech Anal 218, 1131–1187 (2015). https://doi.org/10.1007/s00205-015-0877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0877-7

Keywords

Navigation