Skip to main content

Advertisement

Log in

DiPerna–Lions Flow for Relativistic Particles in an Electromagnetic Field

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We show the existence and uniqueness of a DiPerna–Lions flow for relativistic particles subject to a Lorentz force in an electromagnetic field. The electric and magnetic fields solve the linear Maxwell system in the vacuum but for singular initial conditions which are only in the physical energy space. As the corresponding force field is only in L 2, we have to perform a careful analysis of the cancellations over a trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Bianchini, S., Crippa, G.: A uniqueness result for the continuity equation in two dimensions. J. Eur. Math. Soc. (JEMS) (2011)

  2. Ambrosio L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 227–260 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Arsenio, D., Saint-Raymond, L.: Personal communication, 2011 (See also arXiv:1303.2944: Solutions of the Vlasov–Maxwell–Boltzmann system with long-range interactions)

  4. Bouchut F.: Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Rational Mech. Anal. 157, 75–90 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bouchut F., Desvillettes L.: On two-dimensional Hamiltonian transport equations with continuous coefficients. Differ. Int. Equ. 8(14), 1015–1024 (2001)

    MathSciNet  Google Scholar 

  6. Bouchut F., Golse F., Pallard C.: Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov–Maxwell system. Arch. Rational Mech. Anal. 170(1), 1–15 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Champagnat, N., Jabin, P.-E.: Well posedness in any dimension for Hamiltonian flows with non BV force terms. Commun. Partial Differ. Equ. (2015, to appear)

  8. Colombini F., Crippa G., Rauch J.: A note on two-dimensional transport with bounded divergence. Commun. Partial Differ. Equ. 31, 1109–1115 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Colombini, F., Rauch, J.: Uniqueness in the Cauchy problem for transport in \({{\mathbb{R}}^{2}}\) and \({{\mathbb{R}}^{1+2}}\). J. Differ. Equ. 211(1), 162–167 (2005)

  10. Crippa, G., DeLellis, C.: Estimates and regularity results for the DiPerna–Lions flow. J. Reine Angew. Math. 616, 15–46 (2008)

  11. De Lellis, C.: Notes on hyperbolic systems of conservation laws and transport equations. In: Handbook of differential equations, Evolutionary equations, vol. 3 (2007)

  12. De Pauw, N.: Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d’un hyperplan. C. R. Math. Sci. Acad. Paris 337, 249–252 (2003)

  13. DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

  14. DiPerna, R.J., Lions, P.-L.: Global weak solutions of Vlasov-Maxwell systems. Commun. Pure Appl. Math. 42(6), 729–757 (1989)

  15. DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. (2) 130(2), 321–366 (1989)

  16. Germain, P., Masmoudi, N.: Global existence for the Euler-Maxwell system. Preprint (2011)

  17. Glassey, R.T., Strauss, W.A.: Singularity formation in a collisionless plasma could occur only at high velocities. Arch. Rational Mech. Anal. 92(1), 59–90 (1986)

  18. Hauray, M.: On two-dimensional Hamiltonian transport equations with \({\mathbb{L}_{\rm loc}^{p}}\) coefficients. Ann. IHP. Anal. Non Lin. (4) 20, 625–644 (2003)

  19. Hauray, M.: On Liouville transport equation with force field in \({BV_{\rm loc}}\). Commun. Partial Differ. Equ. 29(1–2), 207–217 (2004)

  20. Jabin, P.E.: Differential Equations with singular fields. J. Math. Pures Appl. (9) 94(6), 597–621 (2010)

  21. Klainerman, S., Staffilani, G.: A new approach to study the Vlasov–Maxwell system. Commun. Pure Appl. Anal. 1(1), 103–125 (2002)

  22. Le Bris, C., Lions, P.L.: Renormalized solutions of some transport equations with partially W 1,1 velocities and applications. Ann. Mat. Pura Appl. 183, 97–130 (2004)

  23. Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-E. Jabin.

Additional information

Communicated by L. Saint-Raymond

N. Masmoudi is partially supported by an NSF Grant DMS-1211806, P.-E. Jabin by NSF Grant 1312142 and by NSF Grant 1107444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabin, PE., Masmoudi, N. DiPerna–Lions Flow for Relativistic Particles in an Electromagnetic Field. Arch Rational Mech Anal 217, 1029–1067 (2015). https://doi.org/10.1007/s00205-015-0850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0850-5

Keywords

Navigation