Skip to main content
Log in

Optimal Shape and Location of Sensors for Parabolic Equations with Random Initial Data

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this article, we consider parabolic equations on a bounded open connected subset \({\Omega}\) of \({\mathbb{R}^n}\). We model and investigate the problem of optimal shape and location of the observation domain having a prescribed measure. This problem is motivated by the question of knowing how to shape and place sensors in some domain in order to maximize the quality of the observation: for instance, what is the optimal location and shape of a thermometer? We show that it is relevant to consider a spectral optimal design problem corresponding to an average of the classical observability inequality over random initial data, where the unknown ranges over the set of all possible measurable subsets of \({\Omega}\) of fixed measure. We prove that, under appropriate sufficient spectral assumptions, this optimal design problem has a unique solution, depending only on a finite number of modes, and that the optimal domain is semi-analytic and thus has a finite number of connected components. This result is in strong contrast with hyperbolic conservative equations (wave and Schrödinger) studied in Privat et al. (J Eur Math Soc, 2015) for which relaxation does occur. We also provide examples of applications to anomalous diffusion or to the Stokes equations. In the case where the underlying operator is any positive (possible fractional) power of the negative of the Dirichlet-Laplacian, we show that, surprisingly enough, the complexity of the optimal domain may strongly depend on both the geometry of the domain and on the positive power. The results are illustrated with several numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, Vol. 55, Washington, DC, 1964

  2. Allaire G., Münch A., Periago F.: Long time behavior of a two-phase optimal design for the heat equation. SIAM J. Control Optim. 48(8), 5333–5356 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anantharaman N., Nonnenmacher S.: Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold. Ann. Inst. Four. (Grenoble) 57(7), 2465–2523 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Antoniades C., Christofides P. D.: Integrating nonlinear output feedback control and optimal actuator/sensor placement for transport-reaction processes. Chem. Eng. Sci. 56(15), 4517–4535 (2001)

    Article  Google Scholar 

  5. Apraiz, J., Escauriaza, L., Wang, G., Zhang, C.: Observability inequalities and measurable sets. J. Europ. Math. Soc. 16(11), 2433–2475 (2014)

  6. Armaoua, A., Demetriou, M.: Optimal actuator/sensor placement for linear parabolic PDEs using spatial H 2 norm. Chem. Eng. Sci. 61, 7351–7367 (2006)

  7. Baouendi, M.S., Métivier, G.: Analytic vectors of hypoelliptic operators of principal type. Amer. J. Math. 104(2), 287–319 (1982)

  8. Bergounioux, M., Trélat, E.: A variational method using fractional order Hilbert spaces for tomographic reconstruction of blurred and noised binary images. J. Funct. Anal. 259(9), 2296–2332 (2010)

  9. Boyer, F., Fabrie, P.: Mathematical tools for the study of the incompressible Navier–Stokes equations and related models. Applied Mathematical Sciences, Vol. 183. Springer, Berlin, 2013

  10. Bucur, D., Buttazzo, G.: Variational methods in shape optimization problems. Progress in Nonlinear Differential Equations, Vol. 65. Birkhäuser, Basel, 2005

  11. Burq N.: Large-time dynamics for the one-dimensional Schrödinger equation. Proc. Roy. Soc. Edinburgh Sect. A. 141(2), 227–251 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Burq N., Tzvetkov N.: Random data Cauchy theory for supercritical wave equations. I. Local theory. Invent. Math. 173(3), 449–475 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Burq, N., Zworski, M.: Bouncing ball modes and Quantum chaos. SIAM Rev. 47(1), 43–49 (2005)

  14. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Diff. Eq. 32, 1245–1260 (2007)

  15. Choulli, M.: Une introduction aux problèmes inverses elliptiques et paraboliques. Mathématiques & Applications, Vol. 65. Springer, Berlin, 2009

  16. Colin de Verdière, Y.: Ergodicité et fonctions propres du Laplacien. Comm. Math. Phys. 102, 497–502 (1985)

  17. El-Farra N.H., Demetriou M.A., Christofides P.D.: Actuator and controller scheduling in nonlinear transport-reaction processes. Chem. Engi. Sci. 63, 3537–3550 (2008)

    Article  Google Scholar 

  18. Fernández-Cara, E., González-Burgos, M., Guerrero, S., Puel, J-P.: Null controllability of the heat equation with boundary Fourier conditions: the linear case. ESAIM Control Optim. Calc. Var. 12(3), 442–465 (2006)

  19. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Duxbury Press, Belmont, 2002

  20. Fernandez-Cara, E., Guerrero, S., Imanuvilov, O.Yu., Puel, J.-P.: Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83, 1501–1542 (2004)

  21. Fernández-Cara, E., Münch, A.: Numerical null controllability of semi-linear 1D heat equations: fixed point, least squares and Newton methods. Math. Control Relat. Fields 3(2), 217–246 (2012)

  22. Fursikov, A.V., Imanuvilov, O.Y.: Controllability of Evolution Equations, Lecture Notes Series, Vol. 34. Seoul National University Research Institute of Mathematics, 1996

  23. Gérard P., Leichtnam E.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71, 559–607 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hardt, R.M.: Stratification of real analytic mappings and images. Invent. Math. 28 (1975)

  25. Harris, T.J., Macgregor, J.F., Wright, J.D.: Optimal sensor location with an application to a packed bed tubular reactor. AIChE J. 26(6), 910–916 (1980)

  26. Hartung, J.: An extension of Sion’s minimax theorem with an application to a method for constrained games. Pacific J. Math. 103(2), 401–408 (1982)

  27. Hassell A., Zelditch S.: Quantum ergodicity of boundary values of eigenfunctions. Comm. Math. Phys. 248(1), 119–168 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Hébrard P., Henrot A.: Optimal shape and position of the actuators for the stabilization of a string. Syst. Cont. Lett. 48, 199–209 (2003)

    Article  MATH  Google Scholar 

  29. Hébrard, P., Henrot, A.: A spillover phenomenon in the optimal location of actuators. SIAM J. Control Optim. 44, 349–366 (2005)

  30. Hironaka, H.: Subanalytic sets. Number Theory, Algebraic Geometry and Commutative Algebra. In honor of Y. Akizuki, Tokyo, 1973

  31. Ingham A.E.: Some trigonometrical inequalities with applications to the theory of series. Math. Zeitschrift 41, 367–379 (1936)

    Article  MathSciNet  Google Scholar 

  32. Jaffard, S., Tucsnak, M., Zuazua, E.: On a theorem of Ingham. J. Fourier Anal. Appl. 3, 577–582 (1997)

  33. Jakobson, D.: Quantum limits on flat tori. Ann. Math. 145, 235–266 (1997)

  34. Jakobson, D., Zelditch, S.: Classical limits of eigenfunctions for some completely integrable systems. Emerging Applications of Number Theory (Minneapolis, MN, 1996), IMA Vol. Math. Appl., Vol. 109. Springer, New York, 329–354, 1999

  35. Keyantuo, V., Lizama, C., Warma, M.: Asymptotic behavior of fractional order semilinear evolution equations. Differ. Integral Equ. 26, 757–780 (2013)

  36. Kelliher J.: On the vanishing viscosity limit in a disk. Math. Ann. 343(3), 701–726 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Krasikov I.: Approximations for the Bessel and Airy functions with an explicit error term. LMS J. Comput. Math. 17(1), 209–225 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lagnese, J.: Control of wave processes with distributed controls supported on a subregion. SIAM J. Control Optim. 21(1), 68–85 (1983)

  39. Léautaud, M.: Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems. J. Funct. Anal. 258, 2739–2778 (2010)

  40. Lebeau G., Robbiano L.: Contrôle exact de l’équation de la chaleur. Comm. Partial Differ. Equ. 20, 335–356 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lee, D.-S., Rummler, B.: The eigenfunctions of the Stokes operator in special domains. III. ZAMM Z. Angew. Math. Mech. 82(6), 399–407 (2002)

  42. Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications, Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968

  43. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(31), R161–R208 (2004)

  44. Micu, S., Zuazua, E.: On the controllability of a fractional order parabolic equation. SIAM J. Cont. Optim. 44(6), 1950–1972 (2006)

  45. Miller L.: On the controllability of anomalous diffusions generated by the fractional Laplacian. Math. Control Signals Systems 18(3), 260–271 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Morris K.: Linear-quadratic optimal actuator location. IEEE Trans. Automat. Control 56(1), 113–124 (2011)

    Article  MathSciNet  Google Scholar 

  47. Münch, A., Periago, F.: Optimal distribution of the internal null control for the 1D heat equation. J. Differ. Equ. 250, 95–111 (2011)

  48. Nguyen, B.-T., Grebenkov, D.S.: Localization of Laplacian eigenfunctions in circular, spherical and elliptical domains. SIAM J. Appl. Math. 73, 780–803 (2013)

  49. Olver, F.W.J.: A further method for the evaluation of zeros of Bessel functions, and some new asymptotic expansions for zeros of functions of large order. Proc. Cambridge Philos. Soc. 47, 699–712 (1951)

  50. Paley, R.E.A.C., Zygmund, A.: On some series of functions (1) (2) (3). Proc. Camb. Phil. Soc. 26, 337–357, 458–474 (1930), 28, 190–205 (1932)

  51. Periago F.: Optimal shape and position of the support for the internal exact control of a string. Syst. Cont. Letters 58(2), 136–140 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  52. Privat, Y., Sigalotti, M.: The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent. ESAIM Control Optim. Calc. Var. 16(3), 794–805 (2010)

  53. Privat, Y., Trélat, E., Zuazua, E.: Optimal location of controllers for the one-dimensional wave equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 1097–1126 (2013)

  54. Privat, Y., Trélat, E., Zuazua, E.: Optimal observability of the one-dimensional wave equation. J. Fourier Anal. Appl. 19(3), 514–544 (2013)

  55. Privat, Y., Trélat, E., Zuazua, E.: Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete Cont. Dynam. Syst. (to appear, 2015)

  56. Privat, Y., Trélat, E., Zuazua, E.: Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains, Preprint Hal J. Europ. Math. Soc. (to appear, 2015)

  57. Shnirelman, A.: Ergodic properties of eigenfunctions. Uspenski Math. Nauk 29/6, 181–182 (1974)

  58. Siegel, K.M.: An inequality involving Bessel functions of argument nearly equal to their order. Proc. Amer. Math. Soc. 4, 858–859 (1953)

  59. Sion M.: On general minimax theorems. Pacific J. Math. 8, 171–176 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  60. Sokolov I., Klafter J., Blumen A.: Fractional kinetics. Phys. Today 55, 48–54 (2002)

    Article  Google Scholar 

  61. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser Verlag, Basel, 2009

  62. Vande Wouwer, A., Point, N., Porteman, S., Remy, M.: An approach to the selection of optimal sensor locations in distributed parameter systems. J. Process Cont. 10, 291–300 (2000)

  63. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

  64. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, London, 1952

  65. Zelditch, S.: Eigenfunctions and Nodal Sets, Preprint 2012

  66. Zelditch S., Zworski M.: Ergodicity of eigenfunctions for ergodic billiards. Comm. Math. Phys. 175(3), 673–682 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Trélat.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privat, Y., Trélat, E. & Zuazua, E. Optimal Shape and Location of Sensors for Parabolic Equations with Random Initial Data. Arch Rational Mech Anal 216, 921–981 (2015). https://doi.org/10.1007/s00205-014-0823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0823-0

Keywords

Navigation