Skip to main content
Log in

On Stability of the Spatially Inhomogeneous Navier–Stokes–Boussinesq System with General Nonlinearity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper considers L 2-asymptotic stability of the spatially inhomogeneous Navier–Stokes–Boussinesq system with general nonlinearity including both power nonlinear terms and convective terms. We construct a local-in-time strong solution of the system by applying semigroup theory on Hilbert spaces and fractional powers of the Stokes–Laplace operator. It is also shown that under some assumptions on an energy inequality the system has a unique global-in-time strong solution when the initial datum is sufficiently small. Furthermore, we investigate the asymptotic stability of the global-in-time strong solution by using an energy inequality, maximal L p-in-time regularity for Hilbert space-valued functions, and fractional powers of linear operators in a solenoidal L 2-space. We introduce new methods for showing the asymptotic stability by applying an energy inequality and maximal L p-in-time regularity for Hilbert space-valued functions. Our approach in this paper can be applied to show the asymptotic stability of energy solutions for various incompressible viscous fluid systems and the stability of small stationary solutions whose structure is not clear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abels H., Terasawa Y.: On Stokes operators with variable viscosity in bounded and unbounded domains. Math. Ann. 344, 381–429 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Babin A., Mahalov A., Nicolaenko B.: On the regularity of three-dimensional rotating Euler–Boussinesq equations. Math. Models Methods Appl. Sci. 9, 1089–1121 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borchers W., Miyakawa T.: L 2 decay for the Navier–Stokes flow in halfspaces. Math. Ann. 282, 139–155 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borchers W., Miyakawa T.: Algebraic L 2 decay for Navier–Stokes flows in exterior domains. Acta Math. 165, 189–227 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borchers W., Miyakawa T.: L 2-decay for Navier–Stokes flows in unbounded domains, with application to exterior stationary flows. Arch. Rational Mech. Anal. 118, 273–295 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Borchers W., Sohr H.: On the semigroup of the Stokes operator for exterior domains in L q-spaces. Math. Z. 196, 415–425 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bothe, D., Prüss, J.: L P -theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39, 379–421 (2007)

  8. Brandolese L., Schonbek M.E.: Large time decay and growth for solutions of a viscous Boussinesq system. Trans. Am. Math. Soc. 364, 5057–5090 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cholewa, J.W., Dlotko, T.: Global attractors in abstract parabolic problems. London Mathematical Society Lecture Note Series, vol. 278, pp. xii+235. Cambridge University Press, Cambridge (2000)

  10. Cosner C.: Pointwise a priori bounds for strongly coupled semilinear systems of parabolic partial differential equations. Indiana Univ. Math. J. 30, 607–620 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. de Simon L.: Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. (Italian) Rend. Sem. Mat. Univ. Padova 34, 205–223 (1964)

    MATH  Google Scholar 

  12. Denk, R., Hieber, M., Prüss, J.: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), viii+114 (2003)

  13. Desch, W., Hieber, M., Prüss, J.: L p-theory of the Stokes equation in a half space. J. Evol. Equ. 1, 115–142 (2001)

  14. Engel, K-J., Nagel, R.: One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics, vol. 194, pp. xxii+586. Springer, New York (2000)

  15. Farwig R., Sohr H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Jpn. 46, 607–643 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems. 2nd edn. Springer Monographs in Mathematics, pp. xiv+1018. Springer, New York (2011)

  17. Gallay T., Wayne C.E.: Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on R 2. Arch. Ration. Mech. Anal. 163, 209–258 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gallay T., Wayne C.E.: Long-time asymptotics of the Navier–Stokes equation in R 2 and R 3 [Plenary lecture presented at the 76th Annual GAMM Conference, Luxembourg, 29 March–1 April 2005]. ZAMM Z. Angew. Math. Mech. 86, 256–267 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Giga Y.: Domains of fractional powers of the Stokes operator in L r spaces. Arch. Rational Mech. Anal. 89, 251–265 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62, 186–212 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  21. Giga Y., Miyakawa T.: Solutions in L r of the Navier–Stokes initial value problem. Arch. Rational Mech. Anal. 89, 267–281 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, vol. 840, pp. iv+348. Springer, Berlin (1981)

  23. Hess, M., Hieber, M., Mahalov, A., Saal, J.: Nonlinear stability of Ekman boundary layers. Bull. Lond. Math. Soc. 42, 691–706 (2010)

  24. Heywood J.G.: On uniqueness questions in the theory of viscous flow. Acta Math. 136, 61–102 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Heywood J.G.: The Navier–Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kajikiya R., Miyakawa T.: On L 2 decay of weak solutions of the Navier–Stokes equations in R n. Math. Z. 192, 135–148 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kato T.: A generalization of the Heinz inequality. Proc. Jpn. Acad. 37, 305–308 (1961)

    Article  MATH  Google Scholar 

  28. Kato T.: Fractional powers of dissipative operators. II. J. Math. Soc. Jpn. 14, 242–248 (1962)

    Article  MATH  Google Scholar 

  29. Kato, T.: Strong L p-solutions of the Navier–Stokes equation in R m, with applications to weak solutions. Math. Z. 187, 471–480 (1984)

  30. Kato T., Fujita H.: On the nonstationary Navier–Stokes system. Rend. Sem. Mat. Univ. Padova 32, 243–260 (1962)

    MATH  MathSciNet  Google Scholar 

  31. Kielhöfer H.: Global solutions of semilinear evolution equations satisfying an energy inequality. J. Differ. Equ. 36, 188–222 (1980)

    Article  ADS  MATH  Google Scholar 

  32. Koba, H.: Nonlinear stability of ekman boundary layers in rotating stratified fluids. Mem. Am. Math. Soc. 228(1073), viii+127 (2014)

  33. Koba, H., Mahalov, A., Yoneda, T.: Global well-posedness for the rotating Navier–Stokes–Boussinesq equations with stratification effects. Adv. Math. Sci. Appl. 22, 61–90 (2012)

  34. Kozono, H.: Global L n-solution and its decay property for the Navier–Stokes equations in half-space \({\mathbb{R}^n_+}\). J. Differ. Equ. 79(1), 79–88 (1989)

  35. Kozono H., Ogawa T.: Global strong solution and its decay properties for the Navier–Stokes equations in three-dimensional domains with noncompact boundaries. Math. Z. 216, 1–30 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kunstmann, P.C., Weis, L.: Maximal L p - regularity for parabolic equations, Fourier multiplier theorems and \({H^\infty}\)- functional calculus. Functional analytic methods for evolution equations, pp. 65–311. Lecture Notes in Mathematics 1855. Springer, Berlin (2004)

  37. Lunardi, A.: Interpolation theory. 2nd edn. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)] Edizioni della Normale, pp. xiv+191 (2009)

  38. Masuda, K.: Weak solutions of Navier–Stokes equations. Tohoku Math. J. (2) 36, 623–646 (1984)

  39. McCracken, M.: The resolvent problem for the Stokes equations on halfspace in L p . SIAM J. Math. Anal. 12, 201–228 (1981)

  40. Miyakawa, T., Schonbek, M.E.: On optimal decay rates for weak solutions to the Navier–Stokes equations in R n. In: Proceedings of Partial Differential Equations and Applications (Olomouc, 1999). Math. Bohem. vol. 126, pp. 443–455 (2001)

  41. Miyakawa T., Sohr H.: On energy inequality, smoothness and large time behavior in L 2 for weak solutions of the Navier–Stokes equations in exterior domains. Math. Z. 199, 455–478 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  42. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol 44, pp. viii+279. Springer, New York (1983)

  43. Pedlosky, J.: Geophysical Fluid Dynamics. 2nd edn. Springer, Berlin (1987)

  44. Petcu, M., Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. Handbook of numerical analysis. Vol. XIV. Special volume: computational methods for the atmosphere and the oceans, pp. 577–750. Handbook of Numerical Analysis, 14. Elsevier, Amsterdam (2009)

  45. Saal, J.: R-Boundedness, \({H^\infty}\)-calculus, Maximal (L p -) Regularity and Applications to Parabolic PDE’s. In: Lecture Notes in Mathematical Sciences,The University of Tokyo, Graduate School of Mathematical Sciences (2007)

  46. Sattinger, D.H.: The mathematical problem of hydrodynamic stability. J. Math. Mech. 19, 979–817 (1969/1970)

  47. Schonbek M.E.: L 2 decay for weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88, 209–222 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  48. Schonbek, M.E.: The Fourier splitting method. Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), pp. 269–274. Cambridge University Press, Cambridge (1995)

  49. Sohr, H.: The Navier–Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], pp. x+367. Birkhäuser, Basel (2001)

  50. Solonnikov, V.A.: L p -estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain. Function theory and partial differential equations. J. Math. Sci. (New York) 105, 2448–2484 (2001)

  51. Solonnikov, V.A.: Estimates of the solution of model evolution generalized Stokes problem in weighted Holder spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 336 (2006). Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. vol. 37, pp. 211–238, 277. [Translation in J. Math. Sci. (N.Y.) 143, 2969–2986 (2007)]

  52. Tanabe, H.: Equations of evolution. Monographs and Studies in Mathematics, vol. 6, pp. xii+260. Pitman (Advanced Publishing Program), Boston (1979)

  53. Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. Handbook of mathematical fluid dynamics, vol. III, pp. 535–657. North-Holland, Amsterdam (2004)

  54. Triebel, H.: Interpolation theory, function spaces, differential operators. North-Holland Mathematical Library, vol. 18, p. 528. North-Holland, Amsterdam (1978)

  55. Wiegner, M.: Decay results for weak solutions of the Navier–Stokes equations on R n. J. Lond. Math. Soc. (2) 35, 303–313 (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Koba.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koba, H. On Stability of the Spatially Inhomogeneous Navier–Stokes–Boussinesq System with General Nonlinearity. Arch Rational Mech Anal 215, 907–965 (2015). https://doi.org/10.1007/s00205-014-0802-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0802-5

Keywords

Navigation