Skip to main content
Log in

Rate-Independent Dynamics and Kramers-Type Phase Transitions in Nonlocal Fokker–Planck Equations with Dynamical Control

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The hysteretic behavior of many-particle systems with non-convex free energy can be modeled by nonlocal Fokker–Planck equations that involve two small parameters and are driven by a time-dependent constraint. In this paper we consider the fast reaction regime related to Kramers-type phase transitions and show that the dynamics in the small-parameter limit can be described by a rate-independent evolution equation with hysteresis. For the proof we first derive mass-dissipation estimates by means of Muckenhoupt constants, formulate conditional stability estimates, and characterize the mass flux between the different phases in terms of moment estimates that encode large deviation results. Afterwards we combine all these partial results and establish the dynamical stability of localized peaks as well as sufficiently strong compactness results for the basic macroscopic quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2005

  2. Ambrosio, L., Savaré, G., Zambotti, L.: Existence and stability for Fokker–Planck equations with log-concave reference measure. Probab. Theory Related Fields 145(3–4), 517–564 (2009). doi:10.1007/s00440-008-0177-3

  3. Arnrich, S., Mielke, A., Peletier, M.A., Savaré, G., Veneroni, M.: Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction. Calc. Var. PDE 44(3–4), 419–454 (2012). doi:10.1007/s00526-011-0440-9

  4. Berglund N.: Kramers’ law: validity, derivations and generalisations. Markov Process. Related Fields 19(3), 459–490 (2013)

    MathSciNet  Google Scholar 

  5. DiBenedetto, E.: Real Analysis. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Boston Inc., Boston, 2002

  6. Dreyer, W., Guhlke, C., Herrmann, M.: Hysteresis and phase transition in many-particle storage systems. Contin. Mech. Thermodyn. 23(3), 211–231 (2011). doi:10.1007/s00161-010-0178-1

  7. Dreyer, W., Huth, R., Mielke, A., Rehberg, J., Winkler, M.: Global existence for a nonlocal and nonlinear Fokker-Planck equation. Z. Angew. Math. Phys. (ZAMP) (2014). doi:10.1007/s00033-014-0401-1

  8. Dreyer W, Jamnik J, Guhlke C, Huth R, Moškon J., Gaberšček M.: The thermodynamic origin of hysteresis in insertion batteries. Nat. Mater. 9, 448–453 (2010)

    Article  ADS  Google Scholar 

  9. Eberle, S.: Well-Posedness of a Nonlocal Fokker–Planck equation. Master’s thesis, Institute for Applied Mathematics, University of Bonn (2013)

  10. Fougères, P.: Spectral gap for log-concave probability measures on the real line. In: Séminaire de Probabilités XXXVIII, Lecture Notes in Math., vol. 1857, pp. 95–123. Springer, Berlin, 2005

  11. Friedman, A.: Stochastic differential equations and applications. Vol. 1. Probability and Mathematical Statistics, Vol. 28. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975

  12. Hanggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62(2), 251–341 (1990). doi:10.1103/RevModPhys.62.251

  13. Herrmann M, Niethammer B.: Kramers’ formula for chemical reactions in the context of a Wasserstein gradient flow. Commun. Math. Sci. 9(2), 623–635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Herrmann, M., Niethammer, B., Velázquez, J.J.: Kramers and non-kramers phase transitions in many-particle systems with dynamical constraint. SIAM Multiscale Model. Simul. 10(3), 818–852 (2012). doi:10.1137/110851882

  15. Huth, R.: On a Fokker–Planck equation coupled with a constraint—analysis of a lithium-ion battery model. Ph.D. thesis, Institut für Mathematik, Humboldt Universität zu Berlin. http://edoc.hu-berlin.de/docviews/abstract.php?id=39510 (2012)

  16. Jordan, R., Kinderlehrer, D., Otto, F.: Free energy and the Fokker–Planck equation. Phys. D 107(2–4), 265–271 (1997). doi:10.1016/S0167-2789(97)00093-6 (Landscape paradigms in physics and biology, Los Alamos, NM, 1996)

  17. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998). doi:10.1137/S0036141096303359

  18. Kramers H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Mielke, A.: Differential, energetic, and metric formulations for rate-independent processes. In: Nonlinear PDE’s and Applications, Lecture Notes in Mathematics, pp. 87–170. Springer Berlin Heidelberg (2011). doi:10.1007/978-3-642-21861-3_3

  20. Mielke A.: Emergence of rate-independent dissipation from viscous systems with wiggly energies. Contin. Mech. Thermodyn. 24, 591–606 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  21. Mielke, A., Truskinovsky, L.: From discrete visco-elasticity to continuum rate-independent plasticity: Rigorous results. Arch. Rat. Mech. Anal. 203(2), 577–619 (2012). doi:10.1007/s00205-011-0460-9

  22. Peletier, M.A., Savaré, G., Veneroni, M.: From diffusion to reaction via \({\Gamma}\)-convergence. SIAM J. Math. Anal. 42(4), 1805–1825 (2010). doi:10.1137/090781474

  23. Puglisi, G., Truskinovsky, L.: Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids 53(3), 655–679 (2005). doi:10.1016/j.jmps.2004.08.004

  24. Risken, H.: The Fokker–Planck equation Springer Series in Synergetics, vol. 18, 2nd edn. Springer, Berlin (1989). doi:10.1007/978-3-642-61544-3 (methods of solution and applications)

  25. Schlichting, A.: Eyring–Kramers formula for Poincaré and logarithmic Sobolev inequalities. Ph.D. thesis, Fakultät für Mathematik und Informatik, Universität Leipzig (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Herrmann.

Additional information

Communicated by A. Mielke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, M., Niethammer, B. & Velázquez, J.J.L. Rate-Independent Dynamics and Kramers-Type Phase Transitions in Nonlocal Fokker–Planck Equations with Dynamical Control. Arch Rational Mech Anal 214, 803–866 (2014). https://doi.org/10.1007/s00205-014-0782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0782-5

Keywords

Navigation