Skip to main content
Log in

A Quantitative Modulus of Continuity for the Two-Phase Stefan Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We derive the quantitative modulus of continuity

$$\omega(r)=\left[ p+\ln \left( \frac{r_0}{r}\right)\right]^{-\alpha (n, p)},$$

which we conjecture to be optimal for solutions of the p-degenerate two-phase Stefan problem. Even in the classical case p = 2, this represents a twofold improvement with respect to the early 1980’s state-of-the-art results by Caffarelli– Evans (Arch Rational Mech Anal 81(3):199–220, 1983) and DiBenedetto (Ann Mat Pura Appl 103(4):131–176, 1982), in the sense that we discard one logarithm iteration and obtain an explicit value for the exponent α(n, p).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acerbi E., Mingione G.: Gradient estimates for a class of parabolic systems. Duke Math. J 136(2), 285–320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Athanasopoulos I., Caffarelli L., Salsa S.: Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems. Ann. Math 143(3), 413–434 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baroni P., Kuusi T., Urbano J.M.: A quantitative modulus of continuity for the two-phase Stefan problem (preprint).http://arxiv.org/abs/1401.2623

  4. Baroni P., Kuusi T., Urbano J.M.: On the boundary regularity in phase transition problems (in preparation)

  5. Caffarelli L., Evans L.C.: Continuity of the temperature in the two-phase Stefan problem. Arch. Rational Mech. Anal 81(3), 199–220 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Caffarelli L., Friedman A.: Continuity of the temperature in the Stefan problem. Indiana Univ. Math. J 28(1), 53–70 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dancer E.N., Hilhorst D., Mimura M., Peletier L.A.: Spatial segregation limit of a competition–diffusion system. Eur. J. Appl. Math 10, 97–115 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. DiBenedetto E.: Continuity of weak solutions to certain singular parabolic equations. Ann. Mat. Pura Appl. 4(103), 131–176 (1982)

    Article  MathSciNet  Google Scholar 

  9. DiBenedetto E.: A boundary modulus of continuity for a class of singular parabolic equations. J. Differ. Equ 63(3), 418–447 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. DiBenedetto E.: Degenerate Parabolic Equations Universitext. Springer-Verlag, New York (1993)

    Book  Google Scholar 

  11. DiBenedetto E., Friedman A.: Regularity of solutions of nonlinear degenerate parabolic systems. J. Reine Angew. Math. (Crelle’s J.) 349, 83–128 (1984)

    MATH  MathSciNet  Google Scholar 

  12. DiBenedetto E., Gianazza U., Vespri V.: Harnack estimates for quasi-linear degenerate parabolic differential equations. Acta Math 200(2), 181–209 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. DiBenedetto E., Gianazza U., Vespri V.: Harnack’s inequality for degenerate and singular parabolic equations. In: (eds) In: Springer Monographs in Mathematics., Springer, New York (2012)

    Google Scholar 

  14. DiBenedetto E., Vespri V.: On the singular equation \({\beta(u)_t=\triangle u}\). Arch. Rational Mech. Anal 132(3), 247–309 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Friedman A.: The Stefan problem in several space variables. Trans. Am. Math. Soc 133, 51–87 (1968)

    Article  MATH  Google Scholar 

  16. Friedman A.: Variational Principles and Free-Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  17. Gianazza U., Surnachev M., Vespri V.: A new proof of the Hölder continuity of solutions to p-Laplace type parabolic equations. Adv. Calc. Var 3(3), 263–278 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Igbida N., Urbano J.M.: Uniqueness for nonlinear degenerate problems. NoDEA Nonlinear Differ. Equ. Appl 10(3), 287–307 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kamenomostskaya, S.L.,: On Stefan problem. Mat. Sbornik 53, 489–514 (1961) (Russian)

  20. Kim I.C., Pozar N.: Viscosity solutions for the two phase Stefan problem. Comm. Partial Differ. Equ 36 42–66 (2011)

  21. Kuusi T.: Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7(4), 673–716 (2008)

    MATH  MathSciNet  Google Scholar 

  22. Kuusi T., Mingione G., Nystrom K.: Sharp regularity for evolutionary obstacle problems, interpolative geometries and removable sets. J. Math. Pures Appl 101(2), 119–151 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ladyzhenskaya O.A., Solonnikov V.A., Ural’tseva N.N.: Linear and quasi-linear equations of parabolic type. In: Translations of Mathematical Monographs, vol. 23. American Mathematical Society (1968)

  24. Nochetto R.H.: A class of nondegenerate two-phase Stefan problems in several space variables. Comm. Partial Differ. Equ 12(1), 21–45 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Oleinik O.A.: A method of solution of the general Stefan problem. Soviet Math. Dokl 1, 1350–1354 (1960)

    MathSciNet  Google Scholar 

  26. Peskir G., Shiryaev A.: Optimal stopping and free-boundary problems. In: (eds) In: Lectures in Mathematics., ETH Zürich, Birkhäuser Verlag (2006)

    Google Scholar 

  27. Rubin J.: Transport of reacting solutes in porous media: relation between mathematical nature of problem formulation and chemical nature of reactions. Water Resour. Res 19(5), 1231–1252 (1983)

    Article  ADS  Google Scholar 

  28. Sacks P.E.: Continuity of solutions of a singular parabolic equation. Nonlinear Anal 7(4), 387–409 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Salsa S.: Two-phase Stefan problem. Recent results and open questions. Milan J. Math 80(2), 267–281 (2012)

    MATH  MathSciNet  Google Scholar 

  30. Stefan J.: Über die Theorie der Eisbildung. Monatshefte Mat. Phys 1, 1–6 (1890)

    Article  MATH  MathSciNet  Google Scholar 

  31. Urbano J.M.: A free boundary problem with convection for the p-Laplacian. Rend. Mat. Appl. (7) 17(1), 1–19 (1997)

  32. Urbano J.M.: Continuous solutions for a degenerate free boundary problem. Ann. Mat. Pura Appl. (4) 178, 195–224 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Urbano J.M.: The method of intrinsic scaling, a systematic approach to regularity for degenerate and singular PDEs. In: Lecture Notes in Mathematics, vol. 1930. Springer-Verlag, Berlin (2008)

  34. Ziemer W.P.: Interior and boundary continuity of weak solutions of degenerate parabolic equations. Trans. Am. Math. Soc 271(2), 733–748 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Miguel Urbano.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroni, P., Kuusi, T. & Urbano, J.M. A Quantitative Modulus of Continuity for the Two-Phase Stefan Problem. Arch Rational Mech Anal 214, 545–573 (2014). https://doi.org/10.1007/s00205-014-0762-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0762-9

Keywords

Navigation