Skip to main content
Log in

Segregated and Synchronized Vector Solutions for Nonlinear Schrödinger Systems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the following nonlinear Schrödinger system in \({\mathbb{R}^3}\)

$$\left\{\begin{array}{ll}-\Delta u + P(|x|)u = \mu u^{2}u + \beta v^2u,\quad x \in \mathbb{R}^3,\\-\Delta v + Q(|x|)v = \nu v^{2}v + \beta u^2v,\quad x \in \mathbb{R}^3,\end{array}\right.$$

where P(r) and Q(r) are positive radial potentials, \({\mu > 0, \nu > 0}\) and \({\beta \in \mathbb{R}}\) is a coupling constant. This type of system arises, in particular, in models in Bose–Einstein condensates theory.

We examine the effect of nonlinear coupling on the solution structure. In the repulsive case, we construct an unbounded sequence of non-radial positive vector solutions of segregated type, and in the attractive case we construct an unbounded sequence of non-radial positive vector solutions of synchronized type. Depending upon the system being repulsive or attractive, our results exhibit distinct characteristic features of vector solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev N., Ankiewicz A: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82(1–4), 2661 (1999)

    Article  ADS  Google Scholar 

  2. Ambrosetti A., Colorado E: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 342, 453–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti A., Colorado E: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch T., Dancer N., Wang Z.-Q: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Diff. Equ. 37, 345–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch T., Wang Z.-Q: Note on ground states of nonlinear Schrödinger systems. J. Part. Diff. Equ. 19, 200–207 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Bartsch T., Wang Z.-Q., Wei J: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl., 2, 353–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang S., Lin C.S., Lin T.C., Lin W: Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensates. Phys. D, 196(3–4), 341–361 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conti M., Terracini S., Verzini G: Nehari’s problem and competing species systems. Ann. Inst. H. Poincaré Anal. Non Linéaire, 19, 871–888 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Dancer E.N., Wei J., Weth T: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 953–969 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. de Figueiredo D.G., Lopes O: Solitary waves for some nonlinear Schrödinger systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 149–161 (2008)

    Article  ADS  MATH  Google Scholar 

  11. Esry B.D., Greene C.H., Burke J.P. Jr., Bohn J.L: Hartree–Fock theory for double condensates. Phys. Rev. Lett. 78, 3594–3597 (1997)

    Article  ADS  Google Scholar 

  12. Benci V., Fortunato D: Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys., 14, 409–420 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao D., Noussair E.S., Yan S: Solutions with multiple peaks for nonlinear elliptic equations. Proc. R. Soc. Edinburgh Sect. A, 129, 235–264 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin T.C., Wei J: Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}^n, n \leqq 3}\) . Commun. Math. Phys., 255, 629–653 (2005)

    MathSciNet  ADS  MATH  Google Scholar 

  15. Lin T.C., Wei J: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 403–439 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Lin T.C., Wei J: Solitary and self-similar solutions of two-component systems of nonlinear Schrödinger equations.. Physica D: Nonlinear Phenomena, 220, 99–115 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Liu Z., Wang Z.-Q: Multiple bound states of nonlinear Schrödinger systems. Comm. Math. Phys., 282, 721–731 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Liu Z., Wang Z.-Q: Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Stud., 10, 175–193 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Mitchell M., Segev M: Self-trapping of inconherent white light. Nature, 387, 880–882 (1997)

    Article  ADS  Google Scholar 

  20. Montefusco E., Pellacci B., Squassina M: Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc., 10, 41–71 (2008)

    MathSciNet  Google Scholar 

  21. Noris B., Tavares H., Terracini S., Verzini G: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Comm. Pure Appl. Math., 63, 267–302 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Rey O: The role of the Green’s function in a non-linear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal., 89, 1–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rüegg Ch. et al.: Bose–Einstein condensation of the triple states in the magnetic insulator TlCuCl 3. Nature, 423, 62–65 (2003)

    Article  ADS  Google Scholar 

  24. Sirakov B: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}^n}\) . Comm. Math. Phys., 271, 199–221 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Terracini S., Verzini G: Multipulse Phase in k-mixtures of Bose–Einstein condenstates. Arch. Rational Mech. Anal., 194, 717–741 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Tian R., Wang Z.-Q: Multiple solitary wave solutions of nonlinear Schrödinger systems. Top Methods Nonlinear Anal., 37, 203–223 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Timmermans E: Phase seperation of Bose–Einstein condensates. Phys. Rev. Lett., 81, 5718–5721 (1998)

    Article  ADS  Google Scholar 

  28. Wang L., Wei J., Yan S: A Neumann problem with critical exponent in non-convex domain and Lin–Ni’s conjecture. Trans. Am. Math. Soc., 361, 1189–1208 (2009)

    Google Scholar 

  29. Wei J., Weth T: Nonradial symmetric bound states for s system of two coupled Schrödinger equations. Rend. Lincei Mat. Appl., 18, 279–293 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Wei J., Weth T: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Rational Mech. Anal., 190, 83–106 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Wei J., Yan S: Infinitely many solutions for the prescribed scalar curvature problem on S n. J. Funct. Anal., 258, 3048–3081 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wei J., Yan S: An elliptic problem with critical growth and Lazer–Mckenna conjecture. Ann. Sci. Norm. Super. Pisa Cl. Sci. 9(5), 423–457 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Wei J., Yan S: Infinitely many solutions for the nonlinear Schrödinger equations in \({\mathbb{R}^n}\) . Calc. Var. Partial Diff. Equ., 37, 423–439 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wei J., Yao W: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure Appl. Anal., 11, 1003–1011 (2012)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-qiang Wang.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, S., Wang, Zq. Segregated and Synchronized Vector Solutions for Nonlinear Schrödinger Systems. Arch Rational Mech Anal 208, 305–339 (2013). https://doi.org/10.1007/s00205-012-0598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0598-0

Keywords

Navigation