Skip to main content
Log in

Global Compensated Compactness Theorem for General Differential Operators of First Order

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions \({u= (u_1, \ldots, u_l)}\) in a bounded domain \({\Omega \subset \mathbb{R}^{n}}\) with the smooth boundary \({\partial\Omega}\). We assume that the H 1-norm \({\|u\|_{H^{1}(\Omega)}}\) is equivalent to \({\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}\) and \({\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}\), where B i  = B i (x, ν) is the trace operator onto \({\partial\Omega}\) associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to \({\partial\Omega}\)). Furthermore, we impose on A 1 and A 2 a cancellation property such as \({A_1A_2^{\prime}=0}\) and \({A_2A_1^{\prime}=0}\), where \({A^{\prime}_i}\) is the formal adjoint differential operator of A i (i = 1, 2). Suppose that \({\{u_m\}_{m=1}^{\infty}}\) and \({\{v_m\}_{m=1}^{\infty}}\) converge to u and v weakly in \({L^2(\Omega)}\), respectively. Assume also that \({\{A_{1}u_m\}_{m=1}^{\infty}}\) and \({\{A_{2}v_{m}\}_{m=1}^{\infty}}\) are bounded in \({L^{2}(\Omega)}\). If either \({\{B_{1}u_m\}_{m=1}^{\infty}}\) or \({\{B_{2}v_m\}_{m=1}^{\infty}}\) is bounded in \({H^{\frac{1}{2}}(\partial\Omega)}\), then it holds that \({\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}\). We also discuss a corresponding result on compact Riemannian manifolds with boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borchers W., Sohr H.: On the equations rot vg and div uf with zero boundary conditions. Hokkaido Math. J. 19, 67–87 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Coifman R., Lions P.L., Meyer Y., Semmes S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72, 247E86 (1993)

    MathSciNet  Google Scholar 

  3. Dafni G.: Nonhomogeneous div-curl lemmas and local Hardy spaces. Adv. Differ. Equ. 10, 505E26 (2005)

    MathSciNet  Google Scholar 

  4. Duvaut G., Lions J.L.: Inequalities in Mechanics and Physics. Springer, Berlin-New York-Heidelberg (1976)

    Book  MATH  Google Scholar 

  5. Georgescu V.: Some boundary value problems for differential forms on compact Riemannian manifolds. Ann. Mat. Pura Appl. 122, 159–198 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gérard P.: Microlocal defect measures. Commun. Partial Differ. Equ. 16, 1761–1794 (1991)

    Article  MATH  Google Scholar 

  7. Kazhikhov, A.V.: Approximation of weak limits and related problems. Mathematical Foundation of Turbulent Viscous Flows (Eds. Cannone, M., Miyakawa, T.). Springer, LNM CIME 1871, 75–100, 2006

  8. Kozono H., Yanagisawa T.: L r-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains. Indiana Univ. Math. J. 58, 1853–1920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kozono H., Yanagisawa T.: Global DIV-CURL Lemma in bounded domains in \({\mathbb{R}^{3}}\). J. Funct. Anal. 256, 3847–3859 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kozono, H., Yanagisawa, T.: Generalized Lax-Milgram theorem in Banach spaces and its application to the elliptic system of boundary value problems. Manuscr. Math. (to appear)

  11. Morrey C.B.: Multiple Integrals in the Calculus of Variations. Grundlerhen, 130. Springer, Berlin-Heidelberg-New York (1966)

    Google Scholar 

  12. Murat F.: Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(4), 489–507 (1987)

    MathSciNet  Google Scholar 

  13. Murat, F.: Compacité par compensation II. Proceeding of the International Meeting on Recent Methods in Nonlinear Analysis (Eds. de Giorgi, E., Magenes, E., Mosco, U.), Pitagora, Bologna, 245–256, 1979

  14. Murat F.: Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothése de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8(4), 69–102 (1981)

    MathSciNet  MATH  Google Scholar 

  15. Robbin J.W., Rogers R., Temple B.: On weak continuity and Hodge decomposition. Trans. Am. Math. Soc. 303, 609–618 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in L q-spaces for bounded and exterior domains. Mathematical Problems Relating to the Navier-Stokes Equations. Series on Advanced in Mathematics for Applied Sciences (Ed. Galdi, G.P.). World Scientific, Singapore-New Jersey-London-Hong Kong, 1–35, 1992

  17. Simader, C.G., Sohr, H.: The Dirichlet problem for the Laplacian in bounded and unbounded domains. Pitman Research Notes in Mathematics Series, 360. Longman, 1996

  18. Tartar, L.: Compensated Compactness and Applications to Partial Differential Equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium 4 (Ed. Knops, R.J.). Research Notes in Mathematics. Pitman, 1979

  19. Tartar L.: H-measures, a new approach for studying homogenisation, oscillation and concentration effect in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115, 193–230 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tartar, L.: Compensation effects in partial differential equations. Memorie di Matematica e Applicazioni, Rendiconti della Accademia Nazionale delle Scienze detta dei XL, Ser. V, vil XXIX, 395–454 (2005)

  21. Temam R.: Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland, Amsterdam-New York–Oxford (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Kozono.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozono, H., Yanagisawa, T. Global Compensated Compactness Theorem for General Differential Operators of First Order. Arch Rational Mech Anal 207, 879–905 (2013). https://doi.org/10.1007/s00205-012-0583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0583-7

Keywords

Navigation