Skip to main content
Log in

Convexity of Stokes Waves of Extreme Form

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Existence is established of a piecewise-convex, periodic, planar curve S below which is defined a harmonic function which simultaneously satisfies prescribed Dirichlet and Neumann boundary conditions on S. In hydrodynamics this corresponds to the existence of a periodic Stokes wave of extreme form which has a convex profile between consecutive stagnation points where there is a corner with a contained angle of 120°

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amick, C.J., Fraenkel, L.E.: On the behaviour near crest of waves of extreme form. Trans. Am. Math.Soc. 299, 273–298 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Amick, C.J., Fraenkel, L.E., Toland, J.F.: On the Stokes conjecture for the wave of extreme form. Acta Math. 148, 193–214 (1982)

    MathSciNet  MATH  Google Scholar 

  3. Buffoni, B. Toland, J.F.: Analytic Theory of global Bifurcation – an Introduction. Princeton: Princeton University Press, 2003

  4. Buffoni, B., Dancer, E.N., Toland, J.F.: Sur les ondes de Stokes et une conjecture de Levi-Civita. Comptes Rendus Acad. Sci. Paris, Série I 326, 1265–1268 (1998)

    Google Scholar 

  5. Buffoni, B., Dancer, E.N., Toland, J.F.: The regularity and local bifurcation of steady periodic water waves. Arch. Ration. Mech. Anal. 152, 207–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buffoni, B., Dancer, E.N., Toland, J.F.: The sub-harmonic bifurcation of Stokes waves. Arch. Ration. Mech. Anal. 152, 241–271 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandler G.A., Graham, I.G.: The computation of water waves modelled by Nekrasov’s equation. SIAM J. Numer. Anal. 30, 1041–1065 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Keady, G., Norbury, J.: On the existence theory for irrotational water waves. Math. Proc. Camb. Phil. Soc. 83, 137–157 (1978)

    MATH  Google Scholar 

  9. Lewy, H.: A note on harmonic functions and a hydrodynamic application. Proc. Am. Math. Soc. 3, 111–113 (1952)

    MathSciNet  MATH  Google Scholar 

  10. McLeod, J.B.: The asymptotic behaviour near the crest of waves of extreme form. Trans. Am. Math.Soc. 299, 299–302 (1987)

    MathSciNet  MATH  Google Scholar 

  11. McLeod, J.B.: The Stokes and Krasovskii conjectures for the wave of greatest height. Stud. Appl. Math. 98, 311–334 (1997) (In pre-print-form: Univ. of Wisconsin Mathematics Research Center Report Number 2041, 1979 (sic))

    MathSciNet  MATH  Google Scholar 

  12. Milne-Thompson, L.M.: Theoretical Hydrodynamics, 6th ed., Macmillan, London, 1968

  13. Nekrasov, A.I.: On steady waves, Izv. Ivanovo-Voznesensk. Politekhn. In-ta 3 (1921)

  14. Plotnikov, P.I.: A proof of the Stokes conjecture in the theory of surface waves. Dinamika Splosh. Sredy 57, 41–76 (1982) (In Russian. English translation Stud. Appl. Math. 3, 217–244 (2002))

    MathSciNet  MATH  Google Scholar 

  15. Plotnikov, P.I., Toland, J.F.: The Fourier coefficients of Stokes waves. In: Nonlinear Problems in Mathematical Physics and Related Topics. In honour of Professor O.A.Ladyzhenskaya, Kluwer, International Mathematical Series, 2002

  16. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. New Jersey: Prentice-Hall, 1967

  17. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    MATH  Google Scholar 

  18. Shargorodsky, E., Toland, J.F.: Complex methods for Bernoulli free boundary problems in-the-large. In preparation

  19. Stokes, G.G.: Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form. Mathematical and Physical Papers. Vol. I, Cambridge, 1880, pp. 225–228

  20. Toland, J.F.: Stokes waves, Topological Methods in Nonlinear Anal. 7, 1–48 (1996); 8, 412–414 (1997)

  21. Toland, J.F.: On the existence of a wave of greatest height and Stokes’s conjecture. Proc. Roy. Soc. London Ser. A 363, 469–485 (1978)

    MathSciNet  MATH  Google Scholar 

  22. Williams, J.M.: Limiting gravity waves in water of finite depth. Phil. Trans. R. Soc. Lond. A 302, 139–188 (1981)

    MathSciNet  MATH  Google Scholar 

  23. Williams, J.M.: Near-limiting gravity waves in water of finite depth. Phil. Trans. R. Soc. Lond. A 314, 353–377 (1985)

    MATH  Google Scholar 

  24. Zygmund, A.: Trigonometric Series I & II. Cambridge: Cambridge University Press, 1959

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Toland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plotnikov, P., Toland, J. Convexity of Stokes Waves of Extreme Form. Arch. Rational Mech. Anal. 171, 349–416 (2004). https://doi.org/10.1007/s00205-003-0292-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-003-0292-3

Keywords

Navigation