Skip to main content
Log in

Biosensors and their applications in detection of organophosphorus pesticides in the environment

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

This review discusses the past and recent advancements of biosensors focusing on detection of organophosphorus pesticides (OPs) due to their exceptional use during the last decades. Apart from agricultural benefits, OPs also impose adverse toxicological effects on animal and human population. Conventional approaches such as chromatographic techniques used for pesticide detection are associated with several limitations. A biosensor technology is unique due to the detection sensitivity, selectivity, remarkable performance capabilities, simplicity and on-site operation, fabrication and incorporation with nanomaterials. This study also provided specifications of the most OPs biosensors reported until today based on their transducer system. In addition, we highlighted the application of advanced complementary materials and analysis techniques in OPs detection systems. The availability of these new materials associated with new sensing techniques has led to introduction of easy-to-use analytical tools of high sensitivity and specificity in the design and construction of OPs biosensors. In this review, we elaborated the achievements in sensing systems concerning innovative nanomaterials and analytical techniques with emphasis on OPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abad J, Pariente F, Hernandez L, Abruna H, Lorenzo E (1998) Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor. Anal Chem 70(14):2848–2855

    Article  CAS  Google Scholar 

  • Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaiee A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10(6):RA141–RA147

    CAS  PubMed  Google Scholar 

  • Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22(5):717–727

    Article  CAS  PubMed  Google Scholar 

  • Alonso GA, Istamboulie G, Ramírez-García A, Noguer T, Marty J-L, Muñoz R (2010) Artificial neural network implementation in single low-cost chip for the detection of insecticides by modeling of screen-printed enzymatic sensors response. Comput Electron Agric 74(2):223–229

    Article  Google Scholar 

  • Alonso GA, Istamboulie G, Noguer T, Marty J-L, Muñoz R (2012) Rapid determination of pesticide mixtures using disposable biosensors based on genetically modified enzymes and artificial neural networks. Sens Actuators B Chem 164(1):22–28

    Article  CAS  Google Scholar 

  • Amniattalab A, Razi M (2015) Effect of phosalone on testicular tissue and in vitro fertilizing potential. Int J Fertil Steril 9(1):93

    PubMed  PubMed Central  Google Scholar 

  • Andreou VG, Clonis YD (2002) A portable fiber-optic pesticide biosensor based on immobilized cholinesterase and sol–gel entrapped bromcresol purple for in-field use. Biosens Bioelectron 17(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Bachmann TT, Leca B, Vilatte F, Marty J-L, Fournier D, Schmid RD (2000) Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Biosens Bioelectron 15(3):193–201

    Article  CAS  PubMed  Google Scholar 

  • Bahadır EB, Sezgintürk MK (2016) A review on impedimetric biosensors. Artif Cells Nanomed Biotechnol 44(1):248–262

    Article  PubMed  CAS  Google Scholar 

  • Bala R, Sharma RK, Wangoo N (2016) Development of gold nanoparticles-based aptasensor for the colorimetric detection of organophosphorus pesticide phorate. Anal Bioanal Chem 408(1):333–338

    Article  CAS  PubMed  Google Scholar 

  • Barceló D, Lacorte S, Marty J (1995) Validation of an enzymatic biosensor with liquid chromatography for pesticide monitoring. TrAC Trends Analyt Chem 14(7):334–340

    Article  Google Scholar 

  • Barrios CA (2009) Optical slot-waveguide based biochemical sensors. Sensors 9(6):4751–4765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil K, Vakil C, Sanborn M, Cole D, Kaur JS, Kerr K (2007) Cancer health effects of pesticides Systematic review. Can Fam Physician 53(10):1704–1711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolognesi C (2003) Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res, Rev Mutat Res 543(3):251–272

    Article  CAS  Google Scholar 

  • Boobis AR, Ossendorp BC, Banasiak U, Hamey PY, Sebestyen I, Moretto A (2008) Cumulative risk assessment of pesticide residues in food. Toxicol Lett 180(2):137–150

    Article  CAS  PubMed  Google Scholar 

  • Bouchard MF, Bellinger DC, Wright RO, Weisskopf MG (2010) Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics 125(6):e1270–e1277

    Article  PubMed  PubMed Central  Google Scholar 

  • Bülbül G, Hayat A, Andreescu S (2015) Portable nanoparticle-based sensors for food safety assessment. Sensors 15(12):30736–30758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhury N, Bhardwaj R, Murari B (2003) Fluorescence spectroscopic study to characterize and monitor TEOS based sol–gel process for development of optical biosensors. Curr Appl Phys 3(2):177–184

    Article  Google Scholar 

  • Choi J-W, Kim Y-K, Lee I-H, Min J, Lee WH (2001) Optical organophosphorus biosensor consisting of acetylcholinesterase/viologen hetero langmuir-blodgett film. Biosens Bioelectron 16(9):937–943

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Kim S, Shin JY, Kim M, Kim J-H (2015) Development and verification for analysis of pesticides in eggs and egg products using QuEChERS and LC–MS/MS. Food Chem 173:1236–1242

    Article  CAS  PubMed  Google Scholar 

  • Chough SH, Mulchandani A, Mulchandani P, Chen W, Wang J, Rogers KR (2002) Organophosphorus hydrolase-based amperometric sensor: modulation of sensitivity and substrate selectivity. Electroanalysis 14(4):273

    Article  CAS  Google Scholar 

  • Chouteau C, Dzyadevych S, Durrieu C, Chovelon J-M (2005) A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens Bioelectron 21(2):273–281

    Article  CAS  PubMed  Google Scholar 

  • Coscollà C, Hart E, Pastor A, Yusà V (2013) LC–MS characterization of contemporary pesticides in PM10 of Valencia Region, Spain. Atmos Environ 77:394–403

    Article  CAS  Google Scholar 

  • Dey D, Goswami T (2011) Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. Biomed Res Int 2011

  • Dong J, Gao N, Peng Y et al (2012) Surface plasmon resonance sensor for profenofos detection using molecularly imprinted thin film as recognition element. Food Control 25(2):543–549

    Article  CAS  Google Scholar 

  • Du D, Huang X, Cai J, Zhang A (2007) Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix. Sens Actuators B Chem 127(2):531–535

    Article  CAS  Google Scholar 

  • Du D, Ding J, Tao Y, Chen X (2008) Application of chemisorption/desorption process of thiocholine for pesticide detection based on acetylcholinesterase biosensor. Sens Actuators B Chem 134(2):908–912

    Article  CAS  Google Scholar 

  • Du D, Wang M, Cai J, Zhang A (2010) Sensitive acetylcholinesterase biosensor based on assembly of β-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide. Sens Actuators B Chem 146(1):337–341

    Article  CAS  Google Scholar 

  • Du G, Xiao Y, Yang HR, Wang L, Yl Song, Wang YT (2012) Rapid determination of pesticide residues in herbs using selective pressurized liquid extraction and fast gas chromatography coupled with mass spectrometry. J Sep Sci 35(15):1922–1932

    Article  CAS  PubMed  Google Scholar 

  • Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187(1):10–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzyadevich S, Soldatkin A, Shul’ga A, Strikha V, El’Skaya A (1994) Conductometric biosensor for determination of organophosphorus pesticides. J Anal Chem 49(8):789–792

    Google Scholar 

  • Dzyadevych SV, Soldatkin AP, Korpan YI et al (2003) Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors. Anal Bioanal Chem 377(3):496–506

    Article  CAS  PubMed  Google Scholar 

  • Dzyadevych SV, Soldatkin AP, Arkhypova VN et al (2005) Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition. Sens Actuators B Chem 105(1):81–87

    Article  CAS  Google Scholar 

  • Dzyadevych SV, Soldatkin AP, Anna V, Martelet C, Jaffrezic-Renault N (2006) Enzyme biosensors based on ion-selective field-effect transistors. Anal Chim Acta 568(1):248–258

    Article  CAS  PubMed  Google Scholar 

  • Fei A, Liu Q, Huan J et al (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129

    Article  CAS  PubMed  Google Scholar 

  • Ferentinos K, Yialouris C, Blouchos P, Moschopoulou G, Tsourou V, Kintzios S (2012) The use of artificial neural networks as a component of a cell-based biosensor device for the detection of pesticides. Procedia Eng 47:989–992

    Article  CAS  Google Scholar 

  • Funari R, Della Ventura B, Schiavo L, Esposito R, Altucci C, Velotta R (2013) Detection of parathion pesticide by quartz crystal microbalance functionalized with uv-activated antibodies. Anal Chem 85(13):6392–6397

    Article  CAS  PubMed  Google Scholar 

  • Gäberlein S, Spener F, Zaborosch C (2000) Microbial and cytoplasmic membrane-based potentiometric biosensors for direct determination of organophosphorus insecticides. Appl Microbiol Biotechnol 54(5):652–658

    Article  PubMed  Google Scholar 

  • Gahlaut A, Gothwal A, Chhillar AK, Hooda V (2012) Electrochemical biosensors for determination of organophosphorus compounds: review. Open J Appl Biosens 1(01):1

    Article  CAS  Google Scholar 

  • García-Valcárcel AI, Tadeo JL (2009) A combination of ultrasonic assisted extraction with LC–MS/MS for the determination of organophosphorus pesticides in sludge. Anal Chim Acta 641(1):117–123

    Article  PubMed  CAS  Google Scholar 

  • Ghasemi-Niri SF, Maqbool F, Baeeri M, Gholami M, Abdollahi M (2016) Phosalone induced inflammation and oxidative stress in the colon: evaluation and treatment. World J Gastroenterol 22:4999–5011

    Article  PubMed  PubMed Central  Google Scholar 

  • Grieshaber D, MacKenzie R, Voeroes J, Reimhult E (2008) Electrochemical biosensors–sensor principles and architectures. Sensors 8(3):1400–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimes CA, Roy SC, Rani S, Cai Q (2011) Theory, instrumentation and applications of magnetoelastic resonance sensors: a review. Sensors 11(3):2809–2844

    Article  PubMed  PubMed Central  Google Scholar 

  • Guler G, Cakmak Y, Dagli Z, Aktumsek A, Ozparlak H (2010) Organochlorine pesticide residues in wheat from Konya region, Turkey. Food Chem Toxicol 48(5):1218–1221

    Article  CAS  PubMed  Google Scholar 

  • Guntupalli R, Hu J, Lakshmanan RS, Huang T, Barbaree JM, Chin BA (2007) A magnetoelastic resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium. Biosens Bioelectron 22(7):1474–1479

    Article  CAS  PubMed  Google Scholar 

  • Halamek J, Přibyl J, Makower A, Skládal P, Scheller F (2005) Sensitive detection of organophosphates in river water by means of a piezoelectric biosensor. Anal Bioanal Chem 382(8):1904–1911

    Article  CAS  PubMed  Google Scholar 

  • Hassani S, Sepand M, Jafari A et al (2014) Protective effects of curcumin and vitamin E against chlorpyrifos-induced lung oxidative damage. Hum Exp Toxicol 34(6):668–676

    Article  PubMed  CAS  Google Scholar 

  • Haupt K (2001) Molecularly imprinted polymers in analytical chemistry. Analyst 126(6):747–756

    Article  CAS  PubMed  Google Scholar 

  • Hayat A, Yang C, Rhouati A, Marty JL (2013) Recent advances and achievements in nanomaterial-based, and structure switchable aptasensing platforms for ochratoxin A detection. Sensors 13(11):15187–15208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Song L, Chen S et al (2015) Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey. Food Chem 187:331–337

    Article  CAS  PubMed  Google Scholar 

  • Hlavata L, Benikova K, Vyskocil V, Labuda J (2012) Evaluation of damage to DNA induced by UV-C radiation and chemical agents using electrochemical biosensor based on low molecular weight DNA and screen-printed carbon electrode. Electrochim Acta 71:134–139

    Article  CAS  Google Scholar 

  • Hobbiger F (1961) The inhibition of acetylcholinesterase by organophosphorus compounds and its reversal [abridged]. Proc R Soc Med 54(5):403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodjat M, Rezvanfar MA, Abdollahi M (2015) A systematic review on the role of environmental toxicants in stem cells aging. Food Chem Toxicol 86:298–308

    Article  CAS  PubMed  Google Scholar 

  • Hu S-Q, Xie J-W, Xu Q-H, Rong K-T, Shen G-L, Yu R-Q (2003) A label-free electrochemical immunosensor based on gold nanoparticles for detection of paraoxon. Talanta 61(6):769–777

    Article  CAS  PubMed  Google Scholar 

  • Hui-Li KT-FG (2005) Study of determination of organophosphorus pesticides using biosensors based on cobalt phthalocyanine polymer modified electrodes. Chem Sens 1:011

    Google Scholar 

  • Istamboulie G, Cortina-Puig M, Marty J-L, Noguer T (2009) The use of artificial neural networks for the selective detection of two organophosphate insecticides: chlorpyrifos and chlorfenvinfos. Talanta 79(2):507–511

    Article  CAS  PubMed  Google Scholar 

  • Ivanov A, Lukachova L, Evtugyn G et al (2002) Polyaniline-modified cholinesterase sensor for pesticide determination. Bioelectrochem 55(1):75–77

    Article  CAS  Google Scholar 

  • Jaffrezic-Renault N (2001) New trends in biosensors for organophosphorus pesticides. Sensors 1(2):60–74

    Article  Google Scholar 

  • Jaffrezic-Renault N, Dzyadevych SV (2008) Conductometric microbiosensors for environmental monitoring. Sensors 8(4):2569–2588

    Article  PubMed  PubMed Central  Google Scholar 

  • Jallouli M, Dhouib IEB, Dhouib H, Gharbi N, El Fazaa S (2015) Effects of dimethoate in male mice reproductive parameters. Regul Toxicol Pharmacol 73(3):853–858

    Article  CAS  PubMed  Google Scholar 

  • Jenkins AL, Uy OM, Murray GM (1999) Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent soman in water. Anal Chem 71(2):373–378

    Article  CAS  PubMed  Google Scholar 

  • Jenkins AL, Yin R, Jensen JL (2001) Molecularly imprinted polymer sensors for pesticide and insecticide detection in water. Analyst 126(6):798–802

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Li D, Xu X et al (2008) Immunosensors for detection of pesticide residues. Biosens Bioelectron 23(11):1577–1587

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Xu Z, Chen J, Liang X, Wu Y, Qian X (2004) Determination of organophosphate and carbamate pesticides based on enzyme inhibition using a pH-sensitive fluorescence probe. Anal Chim Acta 523(1):117–123

    Article  CAS  Google Scholar 

  • Jokar M, Safaralizadeh MH, Hadizadeh F, Rahmani F, Kalani MR (2016a) Apta-nanosensor preparation and in vitro assay for rapid diazinon detection using a computational molecular approach. J Biomol Struct Dyn 1–11

  • Jokar M, Safaralizadeh MH, Hadizadeh F, Rahmani F, Kalani MR (2016b) Design and evaluation of an apta-nano-sensor to detect Acetamiprid in vitro and in silico. J Biomol Struct Dyn 1–13

  • Justino CI, Freitas AC, Pereira R, Duarte AC, Santos TAR (2015) Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends Analyt Chem 68:2–17

    Article  CAS  Google Scholar 

  • Kalender S, Ogutcu A, Uzunhisarcikli M et al (2005) Diazinon-induced hepatotoxicity and protective effect of vitamin E on some biochemical indices and ultrastructural changes. Toxicology 211(3):197–206

    Article  CAS  PubMed  Google Scholar 

  • Kandimalla V, Neeta N, Karanth N et al (2004) Regeneration of ethyl parathion antibodies for repeated use in immunosensor: a study on dissociation of antigens from antibodies. Biosens Bioelectron 20(4):903–906

    Article  CAS  PubMed  Google Scholar 

  • Karami-Mohajeri S, Hadian M, Fouladdel S et al (2013) Mechanisms of muscular electrophysiological and mitochondrial dysfunction following exposure to malathion, an organophosphorus pesticide. Hum Exp Toxicol 33(3):251–263

    Article  PubMed  CAS  Google Scholar 

  • Karousos NG, Aouabdi S, Way AS, Reddy SM (2002) Quartz crystal microbalance determination of organophosphorus and carbamate pesticides. Anal Chim Acta 469(2):189–196

    Article  CAS  Google Scholar 

  • Khare SD, Kipnis Y, Takeuchi R et al (2012) Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat Chem Biol 8(3):294–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim N, Park I-S, Kim D-K (2007) High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor. Biosens Bioelectron 22(8):1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Kissinger PT (2005) Biosensors—a perspective. Biosens Bioelectron 20(12):2512–2516

    Article  CAS  PubMed  Google Scholar 

  • Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949

    Article  CAS  PubMed  Google Scholar 

  • Kolberg DI, Prestes OD, Adaime MB, Zanella R (2011) Development of a fast multiresidue method for the determination of pesticides in dry samples (wheat grains, flour and bran) using QuEChERS based method and GC–MS. Food Chem 125(4):1436–1442

    Article  CAS  Google Scholar 

  • Kolosova AY, Park J-H, Eremin SA, Kang S-J, Chung D-H (2003) Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of the organophosphorus pesticide parathion-methyl. J Agric Food Chem 51(5):1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Kolosova AY, Park J-H, Eremin SA et al (2004) Comparative study of three immunoassays based on monoclonal antibodies for detection of the pesticide parathion-methyl in real samples. Anal Chim Acta 511(2):323–331

    Article  CAS  Google Scholar 

  • Koncki R (2007) Recent developments in potentiometric biosensors for biomedical analysis. Anal Chim Acta 599(1):7–15

    Article  CAS  PubMed  Google Scholar 

  • K’Owino IO, Sadik OA (2005) Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17(23):2101–2113

    Article  CAS  Google Scholar 

  • Kumar P, Kim K-H, Deep A (2015) Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosens Bioelectron 70:469–481

    Article  CAS  PubMed  Google Scholar 

  • Kwong TC (2002) Organophosphate pesticides: biochemistry and clinical toxicology. Ther Drug Monit 24(1):144–149

    Article  CAS  PubMed  Google Scholar 

  • Laschi S, Bulukin E, Palchetti I, Cristea C, Mascini M (2008) Disposable electrodes modified with multi-wall carbon nanotubes for biosensor applications. Irbm 29(2):202–207

    Article  Google Scholar 

  • Lee S, Henthorn D (2012) Materials in biology and medicine. CRC press

  • Lee JH, Park JY, Min K, Cha HJ, Choi SS, Yoo YJ (2010) A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens Bioelectron 25(7):1566–1570

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Mulchandani P, Wang J, Chen W, Mulchandani A (2005) Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Environ Sci Technol 39(22):8853–8857

    Article  CAS  PubMed  Google Scholar 

  • Lerro CC, Koutros S, Andreotti G et al (2015) Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occup Environ Med 72(10):736–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Li A-F, Liu X-Y (2007) Determination of fenthion in tamatos by chemiluminescence assay [J]. Food Sci 6:069

    Google Scholar 

  • Li B, He Y, Xu C (2007) Simultaneous determination of three organophosphorus pesticides residues in vegetables using continuous-flow chemiluminescence with artificial neural network calibration. Talanta 72(1):223–230

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43(1):29–41

    Article  Google Scholar 

  • Li X, Zhang S, Yu Z, Yang T (2014) Surface-enhanced Raman spectroscopic analysis of phorate and fenthion pesticide in apple skin using silver nanoparticles. Appl Spectrosc 68(4):483–487

    Article  CAS  PubMed  Google Scholar 

  • Li S, Luo J, Yin G et al (2015) Selective determination of dimethoate via fluorescence resonance energy transfer between carbon dots and a dye-doped molecularly imprinted polymer. Sens Actuators B Chem 206:14–21

    Article  CAS  Google Scholar 

  • Lin Y, Lu F, Wang J (2004) Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 16(1–2):145–149

    Article  CAS  Google Scholar 

  • Lin T-J, Huang K-T, Liu C-Y (2006) Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance. Biosens Bioelectron 22(4):513–518

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78(3):835–843

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Wang J, Barry R et al (2008) Nanoparticle-based electrochemical immunosensor for the detection of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphate pesticides and nerve agents. Chem Eur J 14(32):9951–9959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Zhou P, Liu X, Sun X, Li H, Lin M (2013) Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioproc Tech 6(3):710–718

    Article  CAS  Google Scholar 

  • Long Q, Li H, Zhang Y, Yao S (2015) Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens Bioelectron 68:168–174

    Article  CAS  PubMed  Google Scholar 

  • Łozowicka B, Jankowska M, Rutkowska E, Hrynko I, Kaczyński P, Miciński J (2014) The evaluation of a fast and simple pesticide multiresidue method in various herbs by gas chromatography. J Nat Med 68(1):95–111

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Barr DB, Pearson MA, Waller LA (2008) Dietary intake and its contribution to longitudinal organophosphorus pesticide exposure in urban/suburban children. Environ Health Perspect 116(4):537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu D, Wang J, Wang L et al (2011) A novel nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents. Adv Funct Mater 21(22):4371–4378

    Article  CAS  Google Scholar 

  • Luzardo OP, Almeida-González M, Ruiz-Suárez N et al (2015) Validated analytical methodology for the simultaneous determination of a wide range of pesticides in human blood using GC–MS/MS and LC–ESI/MS/MS and its application in two poisoning cases. Sci Justice 55(5):307–315

    Article  PubMed  Google Scholar 

  • Makaraviciute A, Ramanaviciene A (2013) Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron 50:460–471

    Article  CAS  PubMed  Google Scholar 

  • Mallat E, Barcelo D, Barzen C, Gauglitz G, Abuknesha R (2001) Immunosensors for pesticide determination in natural waters. TrAC Trends Analyt Chem 20(3):124–132

    Article  CAS  Google Scholar 

  • Marrazza G (2014) Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors 4(3):301–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Domínguez G, Nieto-García AJ, Romero-González R, Frenich AG (2015) Application of QuEChERS based method for the determination of pesticides in nutraceutical products (Camellia sinensis) by liquid chromatography coupled to triple quadrupole tandem mass spectrometry. Food Chem 177:182–190

    Article  PubMed  CAS  Google Scholar 

  • Marty J-L, Mionetto N, Noguer T, Ortega F, Roux C (1993) Enzyme sensors for the detection of pesticides. Biosens Bioelectron 8(6):273–280

    Article  CAS  Google Scholar 

  • Marx S, Zaltsman A, Turyan I, Mandler D (2004) Parathion sensor based on molecularly imprinted sol-gel films. Anal Chem 76(1):120–126

    Article  CAS  Google Scholar 

  • Mauriz E, Calle A, Abad A et al (2006a) Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor. Biosens Bioelectron 21(11):2129–2136

    Article  CAS  PubMed  Google Scholar 

  • Mauriz E, Calle A, Lechuga LM, Quintana J, Montoya A, Manclus J (2006b) Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor. Anal Chim Acta 561(1):40–47

    Article  CAS  Google Scholar 

  • Mauriz E, Calle A, Manclus J et al (2006c) Single and multi-analyte surface plasmon resonance assays for simultaneous detection of cholinesterase inhibiting pesticides. Sens Actuators B Chem 118(1):399–407

    Article  CAS  Google Scholar 

  • Mauriz E, Calle A, Montoya A, Lechuga LM (2006d) Determination of environmental organic pollutants with a portable optical immunosensor. Talanta 69(2):359–364

    Article  CAS  PubMed  Google Scholar 

  • Mauriz E, Calle A, Manclús J et al (2007) Optical immunosensor for fast and sensitive detection of DDT and related compounds in river water samples. Biosens Bioelectron 22(7):1410–1418

    Article  CAS  PubMed  Google Scholar 

  • Mehrvar M, Abdi M (2004) Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci 20(8):1113–1126

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Wei J, Ren X, Ren J, Tang F (2013) A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens Bioelectron 47:402–407

    Article  CAS  PubMed  Google Scholar 

  • Monošík R, Streďanský M, Šturdík E (2012) Biosensors-classification, characterization and new trends. Acta Chimica Slovaca 5(1):109–120

    Article  Google Scholar 

  • Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268(2):157–177

    Article  CAS  PubMed  Google Scholar 

  • Mukundan H, Anderson AS, Grace WK et al (2009) Waveguide-based biosensors for pathogen detection. Sensors 9(7):5783–5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulchandani A, Chen W, Mulchandani P, Wang J, Rogers KR (2001) Biosensors for direct determination of organophosphate pesticides. Biosens Bioelectron 16(4):225–230

    Article  CAS  PubMed  Google Scholar 

  • Nougadère A, Reninger J-C, Volatier J-L, Leblanc J-C (2011) Chronic dietary risk characterization for pesticide residues: a ranking and scoring method integrating agricultural uses and food contamination data. Food Chem Toxicol 49(7):1484–1510

    Article  PubMed  CAS  Google Scholar 

  • Nowicka AM, Kowalczyk A, Stojek Z, Hepel M (2010) Nanogravimetric and voltammetric DNA-hybridization biosensors for studies of DNA damage by common toxicants and pollutants. Biophys Chem 146(1):42–53

    Article  CAS  PubMed  Google Scholar 

  • Obare SO, De C, Guo W et al (2010) Fluorescent chemosensors for toxic organophosphorus pesticides: a review. Sensors 10(7):7018–7043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Organization WH (2006) The impact of pesticides on health: preventing intentional and unintentional deaths from pesticide poisoning. WHO, Geneva

    Google Scholar 

  • Özkütük EB, Diltemiz SE, Özalp E, Say R, Ersöz A (2013) Ligand exchange based paraoxon imprınted QCM sensor. Mater Sci Eng C Mater Biol Appl 33(2):938–942

    Article  PubMed  CAS  Google Scholar 

  • Pacioni NL, Veglia AV (2003) Determination of carbaryl and carbofuran in fruits and tap water by β-cyclodextrin enhanced fluorimetric method. Anal Chim Acta 488(2):193–202

    Article  CAS  Google Scholar 

  • Pakzad M, Fouladdel S, Nili-Ahmadabadi A et al (2013) Sublethal exposures of diazinon alters glucose homostasis in Wistar rats: biochemical and molecular evidences of oxidative stress in adipose tissues. Pestic Biochem Physiol 105(1):57–61

    Article  CAS  PubMed  Google Scholar 

  • Páleníková A, Martínez-Domínguez G, Arrebola FJ, Romero-González R, Hrouzková S, Frenich AG (2015) Multifamily determination of pesticide residues in soya-based nutraceutical products by GC/MS–MS. Food Chem 173:796–807

    Article  PubMed  CAS  Google Scholar 

  • Paliwal S, Wales M, Good T, Grimsley J, Wild J, Simonian A (2007) Fluorescence-based sensing of p-nitrophenol and p-nitrophenyl substituent organophosphates. Anal Chim Acta 596(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Patolsky F, Zheng G, Lieber CM (2006) Nanowire-based biosensors. Anal Chem 78(13):4260–4269

    Article  CAS  PubMed  Google Scholar 

  • Pattnaik P (2005) Surface plasmon resonance. Appl Biochem Biotechnol 126(2):79–92

    Article  CAS  PubMed  Google Scholar 

  • Paz M, Correia-Sá L, Becker H, Longhinotti E, Domingues VF, Delerue-Matos C (2015) Validation of QuEChERS method for organochlorine pesticides analysis in tamarind (Tamarindus indica) products: peel, fruit and commercial pulp. Food Control 54:374–382

    Article  CAS  Google Scholar 

  • Pogačnik L, Franko M (1999) Determination of organophosphate and carbamate pesticides in spiked samples of tap water and fruit juices by a biosensor with photothermal detection. Biosens Bioelectron 14(6):569–578

    Article  PubMed  Google Scholar 

  • Pohanka M, Skládal P (2008) Electrochemical biosensors–principles and applications. J Appl Biomed 6(2):57–64

    CAS  Google Scholar 

  • Pohanka M, Jun D, Kuca K (2008) Amperometric biosensors for real time assays of organophosphates. Sensors 8(9):5303–5312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhakar N, Arora K, Singh SP, Pandey MK, Singh H, Malhotra BD (2007) Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor. Anal Chim Acta 589(1):6–13

    Article  CAS  PubMed  Google Scholar 

  • Quignot N, Tournier M, Pouech C, Cren-Olivé C, Barouki R, Lemazurier E (2012) Quantification of steroids and endocrine disrupting chemicals in rat ovaries by LC–MS/MS for reproductive toxicology assessment. Anal Bioanal Chem 403(6):1629–1640

    Article  CAS  PubMed  Google Scholar 

  • Rahimi R, Nikfar S, Abdollahi M (2006) Increased morbidity and mortality in acute human organophosphate-poisoned patients treated by oximes: a meta-analysis of clinical trials. Hum Exp Toxicol 25(3):157–162

    Article  CAS  PubMed  Google Scholar 

  • Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001

    Article  CAS  Google Scholar 

  • Ramnani P, Saucedo NM, Mulchandani A (2016) Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 143:85–98

    Article  CAS  PubMed  Google Scholar 

  • Rathnayake LK, Northrup SH (2016) Structure and mode of action of organophosphate pesticides: a computational study. Comput Theor Chem 1088:9–23

    Article  CAS  Google Scholar 

  • Razavi BM, Hosseinzadeh H, Movassaghi AR, Imenshahidi M, Abnous K (2013) Protective effect of crocin on diazinon induced cardiotoxicity in rats in subchronic exposure. Chem Biol Interact 203(3):547–555

    Article  CAS  PubMed  Google Scholar 

  • Regueiro J, López-Fernández O, Rial-Otero R, Cancho-Grande B, Simal-Gándara J (2015) A review on the fermentation of foods and the residues of pesticides—biotransformation of pesticides and effects on fermentation and food quality. Crit Rev Food Sci Nutr 55(6):839–863

    Article  CAS  PubMed  Google Scholar 

  • Rezvanfar MA, Hodjat M, Abdollahi M (2016) Growing knowledge of using embryonic stem cells as a novel tool in developmental risk assessment of environmental toxicants. Life Sci 158:137–160

    Article  CAS  PubMed  Google Scholar 

  • Ristori C, Del Carlo C, Martini M, Barbaro A, Ancarani A (1996) Potentiometric detection of pesticides in water samples. Anal Chim Acta 325(3):151–160

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, de Alda MJL, Marco M-P, Barceló D (2005) Biosensors for environmental monitoring: a global perspective. Talanta 65(2):291–297

    CAS  PubMed  Google Scholar 

  • Rogers KR, Valdes JJ, Eldefrawi ME (1991) Effects of receptor concentration, media ph and storage on nicotinic receptor-transmitted signal in a fiber-optic biosensor. Biosens Bioelectron 6(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Rowland CE, Brown CW, Delehanty JB, Medintz IL (2016) Nanomaterial-based sensors for the detection of biological threat agents. Mater Today

  • Sassolas A, Prieto-Simón B, Marty J-L (2012) Biosensors for pesticide detection: new trends. Am J Analyt Chem 3(3):210

    Article  CAS  Google Scholar 

  • Schäferling M (2006) Fluorescence‐based biosensors. Encyclopedia of analytical chemistry

  • Schöning MJ, Krause R, Block K, Musahmeh M, Mulchandani A, Wang J (2003) A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides. Sens Actuators B Chem 95(1):291–296

    Article  CAS  Google Scholar 

  • Schuhmann W (1995) Electron-transfer pathways in amperometric biosensors. Ferrocene-modified enzymes entrapped in conducting-polymer layers. Biosens Bioelectron 10(1):181–193

    Article  CAS  Google Scholar 

  • Schulze H, Vorlová S, Villatte F, Bachmann TT, Schmid RD (2003) Design of acetylcholinesterases for biosensor applications. Biosens Bioelectron 18(2):201–209

    Article  CAS  PubMed  Google Scholar 

  • Shang Z-j Xu, Y-l Wang Y, D-x Wei, L-l Zhan (2011) A rapid detection of pesticide residue based on piezoelectric biosensor. Procedia Eng 15:4480–4485

    Article  CAS  Google Scholar 

  • Sharma AK, Gaur K, Tiwari RK, Gaur MS (2011) Computational interaction analysis of organophosphorus pesticides with different metabolic proteins in humans. J Biomed Res 25(5):335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simoneschi D, Simoneschi F, Todd NE (2014) Assessment of cardiotoxicity and effects of malathion on the early development of zebrafish (Danio rerio) using computer vision for heart rate quantification. Zebrafish 11(3):275–280

    Article  CAS  PubMed  Google Scholar 

  • Simonian A, Good T, Wang S-S, Wild J (2005) Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal Chim Acta 534(1):69–77

    Article  CAS  Google Scholar 

  • Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC Trends Analyt Chem 27(2):108–117

    Article  CAS  Google Scholar 

  • Stadtherr K, Wolf H, Lindner P (2005) An aptamer-based protein biochip. Anal Chem 77(11):3437–3443

    Article  CAS  PubMed  Google Scholar 

  • Strehlitz B, Nikolaus N, Stoltenburg R (2008) Protein detection with aptamer biosensors. Sensors 8(7):4296–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suri CR, Raje M, Varshney GC (2002) Immunosensors for pesticide analysis: antibody production and sensor development. Crit Rev Biotechnol 22(1):15–32

    Article  CAS  Google Scholar 

  • Taranekar P, Baba A, Park JY, Fulghum TM, Advincula R (2006) Dendrimer precursors for nanomolar and picomolar real-time surface plasmon resonance/potentiometric chemical nerve agent sensing using electrochemically crosslinked ultrathin films. Adv Funct Mater 16(15):2000–2007

    Article  CAS  Google Scholar 

  • Teles F, Fonseca L (2008) Trends in DNA biosensors. Talanta 77(2):606–623

    Article  CAS  Google Scholar 

  • Thrasher JD, Heuser G, Broughton A (2002) Immunological abnormalities in humans chronically exposed to chlorpyrifos. Arch Environ Health An Int J 57(3):181–187

    Article  CAS  Google Scholar 

  • Uygun ZO, Dilgin Y (2013) A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos. Sens Actuators B Chem 188:78–84

    Article  CAS  Google Scholar 

  • Vakurov A, Simpson C, Daly C, Gibson T, Millner P (2004) Acetylcholinesterase-based biosensor electrodes for organophosphate pesticide detection: I. Modification of carbon surface for immobilization of acetylcholinesterase. Biosens Bioelectron 20(6):1118–1125

    CAS  PubMed  Google Scholar 

  • Velasco-Garcia MN, Mottram T (2003) Biosensor technology addressing agricultural problems. Biosyst Eng 84(1):1–12

    Article  Google Scholar 

  • Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28(2):232–254

    Article  CAS  PubMed  Google Scholar 

  • Vercoutere W, Akeson M (2002) Biosensors for DNA sequence detection. Curr Opin Chem Biol 6(6):816–822

    Article  CAS  PubMed  Google Scholar 

  • Verma N, Bhardwaj A (2015) Biosensor technology for pesticides—a review. Appl Biochem Biotechnol 175(6):3093–3119

    Article  CAS  PubMed  Google Scholar 

  • Viveros L, Paliwal S, McCrae D, Wild J, Simonian A (2006) A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents. Sens Actuators B Chem 115(1):150–157

    Article  CAS  Google Scholar 

  • Vuković G, Shtereva D, Bursić V, Mladenova R, Lazić S (2012) Application of GC–MSD and LC–MS/MS for the determination of priority pesticides in baby foods in Serbian market. LWT-Food Sci Technol 49(2):312–319

    Article  CAS  Google Scholar 

  • Wang J (2000) Survey and summary from DNA biosensors to gene chips. Nucleic Acids Res 28(16):3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Krause R, Block K et al (2002) Dual amperometric–potentiometric biosensor detection system for monitoring organophosphorus neurotoxins. Anal Chim Acta 469(2):197–203

    Article  CAS  Google Scholar 

  • Wang X, Xing H, Li X, Xu S, Wang X (2011a) Effects of atrazine and chlorpyrifos on the mRNA levels of IL-1 and IFN-γ2b in immune organs of common carp. Fish Shellfish Immunol 31(1):126–133

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jin H-Y, Ma S-C, Lu J, Lin R-C (2011b) Determination of 195 pesticide residues in Chinese herbs by gas chromatography–mass spectrometry using analyte protectants. J Chromatogr A 1218(2):334–342

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu X, Zhang Q et al (2012) Selection of DNA aptamers that bind to four organophosphorus pesticides. Biotechnol Lett 34(5):869–874

    Article  CAS  PubMed  Google Scholar 

  • Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014) Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal Chem 86(24):11937–11941

    Article  CAS  PubMed  Google Scholar 

  • Wu JC, Hseu YC, Tsai JS et al (2011) Fenthion and terbufos induce DNA damage, the expression of tumor-related genes, and apoptosis in HEPG2 cells. Environ Mol Mutagen 52(7):529–537

    Article  CAS  PubMed  Google Scholar 

  • Xiao F, Wang L, Duan H (2016) Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnol Adv 34(3):234–249

    Article  CAS  PubMed  Google Scholar 

  • Xu Z-L, Wang Q, Lei H-T et al (2011) A simple, rapid and high-throughput fluorescence polarization immunoassay for simultaneous detection of organophosphorus pesticides in vegetable and environmental water samples. Anal Chim Acta 708(1):123–129

    Article  CAS  PubMed  Google Scholar 

  • Yadav SS, Singh MK, Yadav RS (2016) Organophosphates Induced Alzheimer’s disease: An Epigenetic Aspect. J Clin Epigenet

  • Yan F, Wang F, Chen Z (2011) Aptamer-based electrochemical biosensor for label-free voltammetric detection of thrombin and adenosine. Sens Actuators B Chem 160(1):1380–1385

    Article  CAS  Google Scholar 

  • Yang Q, Sun Q, Zhou T, Shi G, Jin L (2009) Determination of parathion in vegetables by electrochemical sensor based on molecularly imprinted polyethyleneimine/silica gel films. J Agric Food Chem 57(15):6558–6563

    Article  CAS  PubMed  Google Scholar 

  • Zehani N, Dzyadevych SV, Kherrat R, Jaffrezic-Renault NJ (2014) Sensitive impedimetric biosensor for direct detection of diazinon based on lipases. Front Chem 2:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Ge X, Tang Y, Du D, Liu D, Lin Y (2013a) Nanoparticle-based immunochromatographic test strip with fluorescent detector for quantification of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphorus agents. Analyst 138(18):5431–5436

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang H, Yang C, Du D, Lin Y (2013b) Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Biosens Bioelectron 41:669–674

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang L, Tu Z et al (2014a) Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosens Bioelectron 55:216–219

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Asiri AM, Liu D, Du D, Lin Y (2014b) Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends Analyt Chem 54:1–10

    Article  CAS  Google Scholar 

  • Zhao L, Zhao F, Zeng B (2013) Electrochemical determination of methyl parathion using a molecularly imprinted polymer–ionic liquid–graphene composite film coated electrode. Sens Actuators B Chem 176:818–824

    Article  CAS  Google Scholar 

  • Zhao G, Sun X, Guo Y, Wang X, Jia Y (2014) A portable instrument based on acetylcholinesterase biosensor for the rapid detection of pesticides residues. Sens Transducers 182(11):1

    Google Scholar 

  • Zhao G, Guo Y, Sun X, Wang X (2015a) A system for pesticide residues detection and agricultural products traceability based on acetylcholinesterase biosensor and internet of things. Int J Electrochem Sci 10:3387–3399

    CAS  Google Scholar 

  • Zhao G, Wang H, Liu G (2015b) Advances in biosensor-based instruments for pesticide residues rapid detection. Int J Electrochem Sci 10(12):9790–9807

    CAS  Google Scholar 

  • Zhi-tao C, Yan Z, Xiang-ping Z, Jin-hu Z, Wen-fan W, Jian-hui Z (2010) Determination of the phosalone by flow-injection chemiluminescent. Fujian Anal Test 4:007

    Google Scholar 

  • Zhu X, Yang J, Su Q, Cai J, Gao Y (2005) Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples. J Chromatogr A 1092(2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Zourob M, Ong KG, Zeng K, Mouffouk F, Grimes CA (2007) A wireless magnetoelastic biosensor for the direct detection of organophosphorus pesticides. Analyst 132(4):338–343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank the Pharmaceutical Sciences Research Center of Tehran University of Medical Sciences (TUMS) and Iran National Science Foundation (INSF) for supporting the PhD program of the first author and the Postdoctoral program of the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abdollahi.

Additional information

Shokoufeh Hassani and Saeideh Momtaz have participated equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, S., Momtaz, S., Vakhshiteh, F. et al. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch Toxicol 91, 109–130 (2017). https://doi.org/10.1007/s00204-016-1875-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1875-8

Keywords

Navigation