Skip to main content
Log in

Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

We have reported recently that the proliferation of PC12 cells exposed to micromolar concentrations of Tl(I) or Tl(III) has different outcomes, depending on the absence (EGF cells) or the presence (EGF+ cells) of epidermal growth factor (EGF) added to the media. In the current work, we investigated whether EGF supplementation could also modulate the extent of Tl(I)- or Tl(III)-induced cell apoptosis. Tl(I) and Tl(III) (25–100 μM) decreased cell viability in EGF but not in EGF+ cells. In EGF cells, Tl(I) decreased mitochondrial potential, enhanced H2O2 generation, and activated mitochondrial-dependent apoptosis. In addition, Tl(III) increased nitric oxide production and caused a misbalance between the anti- and pro-apoptotic members of Bcl-2 family. Tl(I) increased ERK1/2, JNK, p38, and p53 phosphorylation in EGF cells. In these cells, Tl(III) did not affect ERK1/2 and JNK phosphorylation but increased p53 phosphorylation that was related to the promotion of cell senescence. In addition, this cation significantly activated p38 in both EGF and EGF+ cells. The specific inhibition of ERK1/2, JNK, p38, or p53 abolished Tl(I)-mediated EGF cell apoptosis. Only when p38 activity was inhibited, Tl(III)-mediated apoptosis was prevented in EGF and EGF+ cells. Together, current results indicate that EGF partially prevents the noxious effects of Tl by preventing the sustained activation of MAPKs signaling cascade that lead cells to apoptosis and point to p38 as a key mediator of Tl(III)-induced PC12 cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Ac-DEVD-pNA:

N-acetyl-Asp-Glu-Val-Asp p-nitroanilide

Ac-IETD-pNA:

N-acetyl-Ile-Glu-Thr-Asp p-nitroanilide

ASK-1:

Apoptosis signal-regulating kinase 1

Bax:

Bcl-2-associated X protein

Bcl-2:

B-cell lymphoma 2

DHR123:

Dihydrorhodamine 123

DMEM:

Dulbeccós modified Eagle medium

2,4-DNP:

2,4-dinitrophenol

EGF:

Epidermal growth factor

ERK:

Extracellular signal-regulated kinases

IOD:

Integrated optical density

JNK:

c-Jun N-terminal kinase

L-NAME:

L-NG-nitroarginine methyl ester

MAPK:

Mitogen-activated protein kinase

MAPKKK:

MAPK kinase kinase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide

NEDA:

N-(1-naphtyl)ethylenediamine dihydrochloride

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PARP:

Poly(AD ribose) polymerase

PI:

Propidium iodide

PBS:

Phosphate-buffered saline

PR:

Ponceau red

R123:

Rhodamine 123

ROS:

Reactive oxygen species

SA-β-Gal:

Senescence-associated-β-galactosidase

TBS:

Tris-buffered saline

X-Gal:

5-Bromo-4-chloro-3-indolyl β-d-galactoside

References

  • Aravinthan A (2015) Cellular senescence: a hitchhiker’s guide. Hum Cell 28:51–64

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (1999) Thallium. ATSDR (Agency for Toxic Substances and Disease Registry). Prepared by Clement International Corp., under contract 205-88-0608, Atlanta, GA

  • Beckerman R, Prives C (2010) Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2:a000935

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bragadin M, Toninello A, Bindoli A, Rigobello MP, Canton M (2003) Thallium induces apoptosis in Jurkat cells. Ann N Y Acad Sci 1010:283–291

    Article  CAS  PubMed  Google Scholar 

  • Brenner B, Koppenhoefer U, Weinstock C, Linderkamp O, Lang F, Gulbins E (1997) Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem 272:22173–22181

    Article  CAS  PubMed  Google Scholar 

  • Bunzl K, Trautmannsheimer M, Schramel P, Reifenhäuser W (2001) Availability of arsenic, copper, lead, thallium, and zinc to various vegetables grown in slag-contaminated soils. J Environ Qual 30:934–939

    Article  CAS  PubMed  Google Scholar 

  • Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J 277:2–21

    Article  CAS  PubMed  Google Scholar 

  • Cerioni L, Palomba L, Cantoni O (2003) The Raf/MEK inhibitor PD98059 enhances ERK1/2 phosphorylation mediated by peroxynitrite via enforced mitochondrial formation of reactive oxygen species. FEBS Lett 547:92–96

    Article  CAS  PubMed  Google Scholar 

  • Cheam V (2001) Thallium contamination of water in Canada. Water Qual Res J Can 36:851–877

    CAS  Google Scholar 

  • Chen TK, Luo G, Ewing AG (1994) Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at the zeptomole level. Anal Chem 66:3031–3035

    Article  CAS  PubMed  Google Scholar 

  • Chi X, Kale J, Leber B, Andrews DW (2014) Regulating cell death at, on, and in membranes. Biochim Biophys Acta 1843:2100–2113

    Article  CAS  PubMed  Google Scholar 

  • Chia CF, Chen SC, Chen CS, Shih CM, Lee HM, Wu CH (2005) Thallium acetate induces C6 glioma cell apoptosis. Ann N Y Acad Sci 1042:523–530

    Article  CAS  PubMed  Google Scholar 

  • Ciapetti G, Granchi D, Verri E, Savarino L, Cavedagna D, Pizzoferrato A (1996) Application of a combination of neutral red and amido black staining for rapid, reliable cytotoxicity testing of biomaterials. Biomaterials 17:1259–1264

    Article  CAS  PubMed  Google Scholar 

  • Cvjetko P, Cvjetko I, Pavlica M (2010) Thallium toxicity in humans. Arh Hig Rada Toksikol 61:111–119

    CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drane P, Bravard A, Bouvard V, May E (2001) Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis. Oncogene 20:430–439

    Article  CAS  PubMed  Google Scholar 

  • Eskandari MR, Pourahmad J, Daraei B (2011) Thallium(I) and thallium(III) induce apoptosis in isolated rat hepatocytes by alterations in mitochondrial function and generation of ROS. Toxicol Environ Chem 93:145–156

    Article  CAS  Google Scholar 

  • Fang Y, Han SI, Mitchell C et al (2004) Bile acids induce mitochondrial ROS, which promote activation of receptor tyrosine kinases and signaling pathways in rat hepatocytes. Hepatology 40:961–971

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Lazarovici P, Guroff G (1989) Regulation of the differentiation of PC12 pheochromocytoma cells. Environ Health Perspect 80:127–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Morselli E, Kepp O, Vitale I, Pinti M, Kroemer G (2011) Mitochondrial liaisons of p53. Antioxid Redox Signal 15:1691–1714

    Article  CAS  PubMed  Google Scholar 

  • Galvan-Arzate S, Santamaria A (1998) Thallium toxicity. Toxicol Lett 99:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ghatan S, Larner S, Kinoshita Y et al (2000) p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol 150:335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glebska J, Koppenol WH (2003) Peroxynitrite-mediated oxidation of dichlorodihydrofluorescein and dihydrorhodamine. Free Radic Biol Med 35:676–682

    Article  CAS  PubMed  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guevara I, Iwanejko J, Dembinska-Kiec A et al (1998) Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 274:177–188

    Article  CAS  PubMed  Google Scholar 

  • Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890

    Article  CAS  PubMed  Google Scholar 

  • Hanzel CE, Verstraeten SV (2006) Thallium induces hydrogen peroxide generation by impairing mitochondrial function. Toxicol Appl Pharmacol 216:485–492

    Article  CAS  PubMed  Google Scholar 

  • Hanzel CE, Verstraeten SV (2009) Tl(I) and Tl(III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells. Toxicol Appl Pharmacol 236:59–70

    Article  CAS  PubMed  Google Scholar 

  • Hanzel CE, Almeira Gubiani MF, Verstraeten SV (2012) Endosomes and lysosomes are involved in early steps of Tl(III)-mediated apoptosis in rat pheochromocytoma (PC12) cells. Arch Toxicol 86:1667–1680

    Article  CAS  PubMed  Google Scholar 

  • Heim M, Wappelhorst O, Markert B (2002) Thallium in terrestrial environments—occurrence and effects. Ecotoxicology 11:369–377

    Article  CAS  PubMed  Google Scholar 

  • Henson ES, Gibson SB (2006) Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: implications for cancer therapy. Cell Signal 18:2089–2097

    Article  CAS  PubMed  Google Scholar 

  • Huie RE, Padmaja S (1993) The reaction of NO with superoxide. Free Radic Res Commun 18:195–199

    Article  CAS  PubMed  Google Scholar 

  • Kawabata H, Germain RS, Vuong PT, Nakamaki T, Said JW, Koeffler HP (2000) Transferrin receptor 2-alpha supports cell growth both in iron-chelated cultured cells and in vivo. J Biol Chem 275:16618–16625

    Article  CAS  PubMed  Google Scholar 

  • Krishna M, Narang H (2008) The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65:3525–3544

    Article  CAS  PubMed  Google Scholar 

  • Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16:393–405

    Article  CAS  PubMed  Google Scholar 

  • Lan A, Liao X, Mo L et al (2011) Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells. PLoS One 6:e25921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law S, Turner A (2011) Thallium in the hydrosphere of south west England. Environ Pollut 159:3484–3489

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Cho HN, Jeoung DI et al (2004) HSP25 overexpression attenuates oxidative stress-induced apoptosis: roles of ERK1/2 signaling and manganese superoxide dismutase. Free Radic Biol Med 36:429–444

    Article  CAS  PubMed  Google Scholar 

  • Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780:1325–1336

    Article  CAS  PubMed  Google Scholar 

  • Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8:1168–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldoveanu T, Follis AV, Kriwacki RW, Green DR (2014) Many players in BCL-2 family affairs. Trends Biochem Sci 39:101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Mouri K, Sako Y (2013) Optimality conditions for cell-fate heterogeneity that maximize the effects of growth factors in PC12 cells. PLoS Comput Biol 9:e1003320

    Article  PubMed  PubMed Central  Google Scholar 

  • Neckers LM, Cossman J (1983) Transferrin receptor induction in mitogen-stimulated human T lymphocytes is required for DNA synthesis and cell division and is regulated by interleukin 2. Proc Natl Acad Sci U S A 80:3494–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  CAS  PubMed  Google Scholar 

  • Pani G, Bedogni B, Anzevino R et al (2000) Deregulated manganese superoxide dismutase expression and resistance to oxidative injury in p53-deficient cells. Cancer Res 60:4654–4660

    CAS  PubMed  Google Scholar 

  • Pavlickova J, Zbiral J, Smatanova M, Habarta P, Houserova P, Kuban V (2006) Uptake of thallium from naturally-contaminated soils into vegetables. Food Addit Contam 23:484–491

    Article  CAS  PubMed  Google Scholar 

  • Peter AL, Viraraghavan T (2005) Thallium: a review of public health and environmental concerns. Environ Int 31:493–501

    Article  CAS  PubMed  Google Scholar 

  • Pino MT, Verstraeten SV (2015) Tl(I) and Tl(III) alter the expression of EGF-dependent signals and cyclins required for pheochromocytoma (PC12) cell-cycle resumption and progression. J Appl Toxicol 35:952–969

    Article  CAS  PubMed  Google Scholar 

  • Pourahmad J, Eskandari MR, Daraei B (2010) A comparison of hepatocyte cytotoxic mechanisms for thallium (I) and thallium (III). Environ Toxicol 25:456–467

    Article  CAS  PubMed  Google Scholar 

  • Queirolo F, Stegen S, Contreras-Ortega C, Ostapczuk P, Queirolo A, Paredes B (2009) Thallium levels and bioaccumulation in environmental samples of northern Chile: human health risks. J Chil Chem Soc 54:464–469

    Article  CAS  Google Scholar 

  • Rago RP, Brazy PC, Wilding G (1992) Disruption of mitochondrial function by suramin measured by rhodamine 123 retention and oxygen consumption in intact DU145 prostate carcinoma cells. Cancer Res 52:6953–6955

    CAS  PubMed  Google Scholar 

  • Repetto G, Del Peso A, Repetto M (1998) Human thallium toxicity. In: Nriagu J (ed) Thallium in the environment advances in environmental science and technology. Wiley, New York, pp 167–199

    Google Scholar 

  • Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Repnik U, Stoka V, Turk V, Turk B (2012) Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta 1824:22–33

    Article  CAS  PubMed  Google Scholar 

  • Sabbioni E, Marafante E, Rade J, Di Nucci A, Gregotti C, Manzo L (1981) Metabolic patterns of low and toxic doses of thallium in the rat. In: Holmstedt B, Lauwerys R, Mercier M, Roberfroid M (eds) Mechanisms of Toxicity and Hazard Evaluation. Elsevier, North-Holland, pp 559–564

    Google Scholar 

  • Schaub G (1996) Effects on humans. In: Schaub G (ed) Thallium Environmental Health Criteria, vol 182. World Health Organization, Geneva, pp 147–168

    Google Scholar 

  • Shacka JJ, Sahawneh MA, Gonzalez JD, Ye YZ, D’Alessandro TL, Estevez AG (2006) Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells. Cell Death Differ 13:1506–1514

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten SV (2006) Relationship between thallium(I)-mediated plasma membrane fluidification and cell oxidants production in Jurkat T cells. Toxicology 222:95–102

    Article  CAS  PubMed  Google Scholar 

  • Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549

    Article  CAS  PubMed  Google Scholar 

  • Wierzbicka M, Szarek-Lukaszewska G, Grodzinska K (2004) Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicol Environ Saf 59:84–88

    Article  CAS  PubMed  Google Scholar 

  • Xiao T, Guha J, Boyle D, Liu CQ, Chen J (2004) Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Sci Total Environ 318:223–244

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Chaiswing L, Velez JM et al (2005) p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res 65:3745–3750

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Yang Y, Xing D (2011) Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J 278:403–413

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of Universidad de Buenos Aires (B086 and 20020100100112) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT 32273 and 2013–1018), Argentina. SVV is a career investigator of CONICET. Authors are grateful to Dr. Juan Pablo Carnevale, Dr. Ana M Adamo, Dr. Leonor Roguin and Dr. Johanna Miquet for the generous gift of etoposide, the antibodies against β-tubulin, ERK1/2, and p-p53, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Viviana Verstraeten.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Figure 1

Etoposide-mediated effects on EGF and EGF+ cell viability. PC12 cells were incubated at 37ºC for 24 h in serum-free DMEM. After media replacement, EGF (□) and EGF+ (■) cells (control) were further incubated for 24 h in the presence 50 μg/ml etoposide (Eto). Cell viability was evaluated from (A) MTT metabolization (B) lysosome ability to incorporate Neutral red, and (C) plasma membrane capacity to exclude PI. Results are shown as the mean ± SEM of at least four independent experiments. * denotes a significant difference from the value measured in control cells (P < 0.05). (TIFF 352 kb)

Suppl. Figure 2

Effects of 2,4-dinitrophenol (DNP) on mitochondrial potential and oxidant production in EGF and EGF+ cells. PC12 cells were incubated at 37ºC for 24 h in serum-free DMEM. After media replacement, EGF (□) and EGF+ (■) cells (control) were further incubated for 23.5 h in the presence of their respective culture media. After addition of 100 μM DNP, cells were incubated for 30 min at 37ºC and (A) mitochondrial potential, and (B) oxidant production were evaluated. Results are shown as the mean ± SEM of four independent experiments. * denotes a significant difference from the value measured in cells incubated in control cells (P < 0.05). # denotes a significant difference from the value measured in control EGF cells (P < 0.05) (TIFF 281 kb)

Suppl. Figure 3

Etoposide promotion of apoptosis in EGF and EGF+ cells. PC12 cells were incubated at 37ºC for 24 h in serum-free DMEM. After media replacement, EGF (□) and EGF+ (■) cells (control) were further incubated for 24 h in the presence 50 μg/ml etoposide (Eto). Apoptotic cell content was evaluated in the samples by nuclear staining with PI and analysis by flow cytometry. Results are shown as the mean ± SEM of four independent experiments. * denotes a significant difference from the value measured in cells incubated in control cells (P < 0.05) (TIFF 281 kb)

Supplementary material 4 (TIFF 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pino, M.T.L., Marotte, C. & Verstraeten, S.V. Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis. Arch Toxicol 91, 1157–1174 (2017). https://doi.org/10.1007/s00204-016-1793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1793-9

Keywords

Navigation