Skip to main content
Log in

Formaldehyde induces toxicity in mouse bone marrow and hematopoietic stem/progenitor cells and enhances benzene-induced adverse effects

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Formaldehyde (FA) is a human leukemogen and is hematotoxic in human and mouse. The biological plausibility of FA-induced leukemia is controversial because few studies have reported FA-induced bone marrow (BM) toxicity, and none have reported BM stem/progenitor cell toxicity. We sought to comprehensively examine FA hematoxicity in vivo in mouse peripheral blood, BM, spleen and myeloid progenitors. We included the leukemogen and BM toxicant, benzene (BZ), as a positive control, separately and together with FA as co-exposure occurs frequently. We exposed BALB/c mice to 3 mg/m3 FA in air for 2 weeks, mimicking occupational exposure, then measured complete blood counts, nucleated BM cell count, and myeloid progenitor colony formation. We also investigated potential mechanisms of FA toxicity, including reactive oxygen species (ROS) generation, apoptosis, and hematopoietic growth factor and receptor levels. FA exposure significantly reduced nucleated BM cells and BM-derived colony-forming unit-granulocyte–macrophage (CFU-GM) and burst-forming unit-erythroid (BFU-E); down-regulated GM-CSFRα and EPOR expression; increased ROS in nucleated BM, spleen and CFU-GM cells; and increased apoptosis in nucleated spleen and CFU-GM cells. FA and BZ each similarly altered BM mature cells and stem/progenitor counts, BM and CFU-GM ROS, and apoptosis in spleen and CFU-GM but had differential effects on other end points. Co-exposure was more potent for several end points. Thus, FA is toxic to the mouse hematopoietic system, including BM stem/progenitor cells, and it enhances BZ-induced toxic effects. Our findings suggest that FA may induce BM toxicity by affecting myeloid progenitor growth and survival through oxidative damage and reduced expression levels of GM-CSFRα and EPOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BZ:

Benzene

BM:

Bone marrow

BFU-E:

Burst-forming unit-erythroid

bw:

Body weight

CBC:

Complete blood counts

CMP:

Common myeloid progenitor

CSF:

Colony-stimulating factor

EP:

Erythroid progenitor

EPO:

Erythropoietin

EPOR:

EPO receptor

FA:

Formaldehyde

GRA:

Granulocytes

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

GM-CSFRα:

GM-CSF receptor α

GMP:

Granulocyte–monocyte progenitor

HSC:

Hematopoietic stem cells

HPC:

Hematopoietic progenitor cells

HGB:

Hemoglobin

IL-3:

Interleukin-3

IL-3Rα:

IL-3 receptor α

LYM:

Lymphocytes

MCV:

Mean corpuscular volume

MEP:

Megakaryocyte–erythroid progenitor

MON:

Monocytes

MPP:

Multipotent progenitor

PLT:

Platelets

ROS:

Reactive oxygen species

RBC:

Red blood cells

WBC:

White blood cells

References

  • ASTM (1984) Standard test method for estimating sensory irritancy of airborne chemicals, designation E981-84. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • Battisti V, Maders LD, Bagatini MD et al (2008) Measurement of oxidative stress and antioxidant status in acute lymphoblastic leukemia patients. Clin Biochem 41(7):511–518

    Article  CAS  PubMed  Google Scholar 

  • Bos A, Wever R, Roos D (1978) Characterization and quantification of the peroxidase in human monocytes. Biochim Biophys Acta 525(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Callera F, Falcão RP (1997) Increased apoptotic cells in bone marrow biopsies from patients with aplastic anaemia. Br J Haematol 98(1):18–20

    Article  CAS  PubMed  Google Scholar 

  • Casanova M, Heck HDA (1987) Further studies of the metabolic incorporation and covalent binding of inhaled [3H]- and [14C]formaldehyde in Fischer-344 rats: effects of glutathione depletion. Toxicol Appl Pharmacol 89(1):105–121

    Article  CAS  PubMed  Google Scholar 

  • Casanova-Schmitz M, Starr TB, Heck HD (1984) Differentiation between metabolic incorporation and covalent binding in the labeling of macromolecules in the rat nasal mucosa and bone marrow by inhaled [14C]- and [3H]formaldehyde. Toxicol Appl Pharmacol 76(1):26–44

    Article  CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denburg JA, van Eeden SF (2006) Bone marrow progenitors in inflammation and repair: new vistas in respiratory biology and pathophysiology. Eur Respir J 27(3):441–445

    Article  CAS  PubMed  Google Scholar 

  • Edrissi B, Taghizadeh K, Moeller BC et al (2013) Dosimetry of N(6)-formyllysine adducts following [(1)(3)C(2)H(2)]-formaldehyde exposures in rats. Chem Res Toxicol 26(10):1421–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fried W (2009) Erythropoietin and erythropoiesis. Exp Hematol 37(9):1007–1015

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JK, Heck JE, Cockburn M, Su J, Jerrett M, Ritz B (2013) Prenatal exposure to traffic-related air pollution and risk of early childhood cancers. Am J Epidemiol 178(8):1233–1239

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulec M, Songur A, Sahin S, Ozen OA, Sarsilmaz M, Akyol O (2006) Antioxidant enzyme activities and lipid peroxidation products in heart tissue of subacute and subchronic formaldehyde-exposed rats: a preliminary study. Toxicol Ind Health 22(3):117–124

    Article  CAS  PubMed  Google Scholar 

  • Heck HDA, Casanova M (1987) Isotope effects and their implications for the covalent binding of inhaled [3H]- and [14C]formaldehyde in the rat nasal mucosa. Toxicol Appl Pharmacol 89(1):122–134

    Article  CAS  Google Scholar 

  • IARC (2012) Monographs on the evaluation of carcinogenic risks to humans -formaldehyde. World Health Organization, International Agency for Research on Cancer 100(Part F):401–436

  • Inoue T, Hirabayashi Y (2010) Hematopoietic neoplastic diseases develop in C3H/He and C57BL/6 mice after benzene exposure: strain differences in bone marrow tissue responses observed using microarrays. Chem Biol Interact 184(1–2):240–245

    Article  CAS  PubMed  Google Scholar 

  • Irwin M, Patterson T, Smith TL et al (1990) Reduction of immune function in life stress and depression. Biol Psychiatry 27(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Hirao A, Arai F et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12(4):446–451

    Article  CAS  PubMed  Google Scholar 

  • Jang Y-Y, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110(8):3056–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerns WD, Pavkov KL, Donofrio DJ, Gralla EJ, Swenberg JA (1983) Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Res 43(9):4382–4392

    CAS  PubMed  Google Scholar 

  • Kleinnijenhuis AJ, Staal YC, Duistermaat E, Engel R, Woutersen RA (2013) The determination of exogenous formaldehyde in blood of rats during and after inhalation exposure. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc 52:105–112

    Article  CAS  Google Scholar 

  • Lan Q, Smith MT, Tang X et al (2015) Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde. Carcinogenesis 36(1):160–167

    Article  CAS  PubMed  Google Scholar 

  • Lino dos Santos Franco A, Damazo AS, Beraldo de Souza HR et al (2006) Pulmonary neutrophil recruitment and bronchial reactivity in formaldehyde-exposed rats are modulated by mast cells and differentially by neuropeptides and nitric oxide. Toxicol Appl Pharmacol 214(1):35–42

    Article  Google Scholar 

  • Lino-dos-Santos-Franco A, Correa-Costa M, Durao A et al (2011) Formaldehyde induces lung inflammation by an oxidant and antioxidant enzymes mediated mechanism in the lung tissue. Toxicol Lett 207(3):278–285

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Zhang L, McHale CM, Hammond SK (2011) Paternal smoking and risk of childhood acute lymphoblastic leukemia: systematic review and meta-analysis. J Oncol 2011:854584

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu K, Moeller B, Doyle-Eisele M, McDonald J, Swenberg JA (2011) Molecular dosimetry of N2-hydroxymethyl-dG DNA adducts in rats exposed to formaldehyde. Chem Res Toxicol 24(2):159–161

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka T, Takaki A, Ohtaki H, Shioda S (2010) Early changes to oxidative stress levels following exposure to formaldehyde in ICR mice. J Toxicol Sci 35(5):721–730

    Article  CAS  PubMed  Google Scholar 

  • McHale CM, Zhang L, Smith MT (2012) Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis 33(2):240–252

    Article  CAS  PubMed  Google Scholar 

  • Metayer C, Zhang L, Wiemels JL et al (2013) Tobacco smoke exposure and the risk of childhood acute lymphoblastic and myeloid leukemias by cytogenetic subtype. Cancer Epidemiol Biomark Prev 22(9):1600–1611

    Article  Google Scholar 

  • Milne E, Greenop KR, Scott RJ et al (2012) Parental prenatal smoking and risk of childhood acute lymphoblastic leukemia. Am J Epidemiol 175(1):43–53

    Article  PubMed  Google Scholar 

  • Moeller BC, Lu K, Doyle-Eisele M, McDonald J, Gigliotti A, Swenberg JA (2011) Determination of N2-hydroxymethyl-dG adducts in the nasal epithelium and bone marrow of nonhuman primates following 13CD2-formaldehyde inhalation exposure. Chem Res Toxicol 24(2):162–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NTP (2011) Formaldehyde (13th Report on Carcinogens). National Toxicology Program, Research Triangle Park, NC. https://ntp.niehs.nih.gov/ntp/roc/content/profiles/formaldehyde.pdf

  • Passegue E, Jamieson CHM, Ailles LE, Weissman IL (2003) Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 100(Supplement 1):11842–11849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pervaiz S, Taneja R, Ghaffari S (2009) Oxidative stress regulation of stem and progenitor cells. Antioxid Redox Signal 11(11):2777–2789

    Article  CAS  PubMed  Google Scholar 

  • Pialoux V, Mounier R (2012) Hypoxia-induced oxidative stress in health disorders. Oxid Med Cell Longev 2012:940121

    Article  PubMed  PubMed Central  Google Scholar 

  • Pontel LB, Rosado IV, Burgos-Barragan G et al (2015) Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Mol Cell 60(1):177–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rager JE, Moeller BC, Doyle-Eisele M, Kracko D, Swenberg JA, Fry RC (2013) Formaldehyde and epigenetic alterations: microRNA changes in the nasal epithelium of nonhuman primates. Environ Health Perspect 121(3):339–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Raza A, Gezer S, Mundle S et al (1995) Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 86(1):268–276

    CAS  PubMed  Google Scholar 

  • Reid A, Glass DC, Bailey HD et al (2011) Parental occupational exposure to exhausts, solvents, glues and paints, and risk of childhood leukemia. Cancer Causes Control 22(11):1575–1585

    Article  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  PubMed  Google Scholar 

  • Schuettpelz LG, Link DC (2013) Regulation of hematopoietic stem cell activity by inflammation. Front Immunol 4:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz J, Kaminker K (1962) Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization. Arch Biochem Biophys 96:465–467

    Article  CAS  PubMed  Google Scholar 

  • Shieh JH, Moore MA (1989) Hematopoietic growth factor receptors. Cytotechnology 2(4):269–286

    Article  CAS  PubMed  Google Scholar 

  • Shin DY, Kim GY, Li W et al (2009) Implication of intracellular ROS formation, caspase-3 activation and Egr-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells. Biomed Pharmacother 63(2):86–94

    Article  CAS  PubMed  Google Scholar 

  • Snyder R (2012) Leukemia and benzene. Int J Environ Res Public Health 9(8):2875–2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Q, Hao J, Yang L, Wang X, Gu L, Yu Y (2004) Mutagenicity of joint exposure to formaldehyde and benzene in mice. J Environ Health 21(5):323–324 (in Chinese)

    CAS  Google Scholar 

  • Tang XJ, Bai Y, Duong A, Smith MT, Li LY, Zhang LP (2009) Formaldehyde in China: production, consumption, exposure levels, and health effects. Environ Int 35(8):1210–1224

    Article  CAS  PubMed  Google Scholar 

  • Testa U, Riccioni R, Diverio D, Rossini A, Lo Coco F, Peschle C (2004) Interleukin-3 receptor in acute leukemia. Leukemia 18(2):219–226

    Article  CAS  PubMed  Google Scholar 

  • Thomson EM, Williams A, Yauk CL, Vincent R (2009) Impact of nose-only exposure system on pulmonary gene expression. Inhal Toxicol 21(Suppl 1):74–82

    Article  CAS  PubMed  Google Scholar 

  • Walkley CR (2011) Erythropoiesis, anemia and the bone marrow microenvironment. Int J Hematol 93(1):10–13

    Article  PubMed  Google Scholar 

  • Wan Y, Xiaokaiti Y (2009) Study of combined toxicity of formaldehyde and benzene on DNA damage of bone marrow cells of female mice. J Xinjiang Med Univ 32(7):856–860 (in Chinese)

    CAS  Google Scholar 

  • Wang HX, Wang XY, Zhou DX et al (2013) Effects of low-dose, long-term formaldehyde exposure on the structure and functions of the ovary in rats. Toxicol Ind Health 29(7):609–615

    Article  PubMed  Google Scholar 

  • Yahata T, Takanashi T, Muguruma Y et al (2011) Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118(11):2941–2950

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Ji ZY, Wei CX et al (2013) Inhaled formaldehyde induces DNA-protein crosslinks and oxidative stress in bone marrow and other distant organs of exposed mice. Environ Mol Mutagen 54(9):705–718

    Article  CAS  PubMed  Google Scholar 

  • Yi JY, Yoon BI (2008) Benzene-induced hematotoxicity and myelotoxicity by short-term repeated oral administration in mice. Lab Anim Res 24:99–103

    Google Scholar 

  • Zhang CC, Sadek HA (2014) Hypoxia and metabolic properties of hematopoietic stem cells. Antioxid Redox Signal 20(12):1891–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhu F, Yin L, Pu Y (2010a) Combined genotoxicity of benzene and formaldehyde co-exposure in BALB/c mice. Carcinog Teratog Mutagen 22(4):308–311 (in Chinese)

    CAS  Google Scholar 

  • Zhang L, Tang X, Rothman N et al (2010b) Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol Biomark Prev 19(1):80–88

    Article  CAS  Google Scholar 

  • Zhang LP, Freeman LEB, Nakamura J et al (2010c) Formaldehyde and leukemia: epidemiology, potential mechanisms, and implications for risk assessment. Environ Mol Mutagen 51(3):181–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Yuan F, Liu X et al (2010d) Genotoxicity of formaldehyde and benzene joint inhalation on bone-marrow cells of male mice. J Environ Occup Med 27(5):295–296 (in Chinese)

    CAS  Google Scholar 

  • Zhang Y, Liu X, McHale C et al (2013) Bone marrow injury induced via oxidative stress in mice by inhalation exposure to formaldehyde. PLoS ONE 8(9):e74974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, McHale CM, Liu X, Yang X, Ding S, Zhang L (2016) Data on megakaryocytes in the bone marrow of mice exposed to formaldehyde. Data Brief 6:948–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou FL, Zhang WG, Wei Y-C et al (2010) Involvement of oxidative stress in the relapse of acute myeloid leukemia. J Biol Chem 285(20):15010–15015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China-Key Program (51136002) to XY, National Institute of Health (R01ES017452) to LZ, and Excellent Doctoral Dissertation Cultivation Grant from Central China Normal University (2013YBYB67) to CW.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Yang or Luoping Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors. The manuscript does not contain clinical studies or patient data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Wen, H., Yuan, L. et al. Formaldehyde induces toxicity in mouse bone marrow and hematopoietic stem/progenitor cells and enhances benzene-induced adverse effects. Arch Toxicol 91, 921–933 (2017). https://doi.org/10.1007/s00204-016-1760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1760-5

Keywords

Navigation