Skip to main content
Log in

Butyrylcholinesterase identification in a phenylvalerate esterase-enriched fraction sensitive to low mipafox concentrations in chicken brain

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Multiple epidemiological and experimental studies have demonstrated that exposure to organophosphorus compounds (OPs) is associated with a variety of neurological disorders. Some of these exposure symptoms cannot be precisely correlated with known molecular targets and mechanisms of toxicity. Most of the known molecular targets of OPs fall in the protein family of serine esterases. We have shown that three esterase components in the soluble fraction of chicken brain (an animal model frequently used in OP neurotoxicity assays) can be kinetically distinguished using paraoxon, mipafox and phenylmethyl sulfonyl fluoride as inhibitors, and phenyl valerate as a substrate; we termed them Eα, Eβ and Eγ. The Eα-component, which is highly sensitive to paraoxon and mipafox and resistant to PMSF, has shown sensitivity to the substrate acetylthiocholine, and to ethopropazine and iso-OMPA (specific inhibitors of butyrylcholinesterase; BChE) but not to BW 284C51 (a specific inhibitor of acetylcholinesterase; AChE). In this work, we employed a large-scale proteomic analysis B with a LC/MS/MS TripleTOF system; 259 proteins were identified in a chromatographic fractionated sample enriched in Eα activity of the chicken brain soluble fraction. Bioinformatics analysis revealed that BChE is the only candidate protein identified to be responsible for almost all the Eα activity. This study demonstrates the potential information to be gained from combining kinetic dissection with large-scale proteomics and bioinformatics analyses for identification of proteins that are targets of OP toxicity and may be involved in detoxification of phosphoryl and carbonyl esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bairoch A (1992) PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res 20(Suppl):2013–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barril J, Estévez J, Escudero MA, Céspedes MV, Níguez N, Sogorb MA, Monroy A, Vilanova E (1999) Peripheral nerve soluble esterases are spontaneously reactivated after inhibition by paraoxon: implications for a new definition of neuropathy target esterase. Chem Biol Interact 119–120:541–550

    Article  PubMed  Google Scholar 

  • Benabent M, Vilanova E, Mangas I, Sogorb MÁ, Estévez J (2014a) Interaction between substrates suggests a relationship between organophosphorus-sensitive phenylvalerate- and acetylcholine-hydrolyzing activities in chicken brain. Toxicol Lett 230(2):132–138

    Article  CAS  PubMed  Google Scholar 

  • Benabent M, Vilanova E, Sogorb MÁ, Estévez J (2014b) Cholinesterase assay by an efficient fixed time endpoint method. MethodsX 1:258–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrington CD, Abou-Donia MB (1984) The correlation between the recovery rate of neurotoxic esterase activity and sensitivity to organophosphorus-induced delayed neurotoxicity. Toxicol Appl Pharmacol 75(2):350–357

    Article  CAS  PubMed  Google Scholar 

  • Casida JE, Quistad GB (2005) Serine hydrolase targets of organophosphorus toxicants. Chem Biol Interact 157–158:277–283

    Article  PubMed  Google Scholar 

  • Céspedes MV, Escudero MA, Barril J, Sogorb MA, Vicedo JL, Vilanova E (1997) Discrimination of carboxylesterases of chicken neural tissue by inhibition with a neuropathic, non-neuropathic organophosphorus compounds and neuropathy promoter. Chem Biol Interact 106(3):191–200

    Article  PubMed  Google Scholar 

  • Chatonnet A, Lockridge O (1989) Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 260(3):625–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemnitius JM, Haselmeyer KH, Zech R (1983) Neurotoxic esterase. Identification of two isoenzymes in hen brain. Arch Toxicol 53(3):235–244

    Article  CAS  PubMed  Google Scholar 

  • Costa LG (2006) Current issues in organophosphate toxicology. Clin Chim Acta 366(1–2):1–13

    Article  CAS  PubMed  Google Scholar 

  • Cousin X, Hotelier T, Giles K, Lievin P, Toutant JP, Chatonnet A (1997) The alpha/beta fold family of proteins database and the cholinesterase gene server ESTHER. Nucleic Acids Res 25(1):143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cucuianu M (1999) Serum gamma-glutamyltransferase and/or serum cholinesterase as markers of the metabolic syndrome. Diabetes Care 22(8):1381–1382

    Article  CAS  PubMed  Google Scholar 

  • Cygler M, Schrag JD, Sussman JL, Harel M, Silman I, Gentry MK, Doctor BP (1993) Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci 2(3):366–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darvesh S, Walsh R, Kumar R, Caines A, Roberts S, Magee D, Rockwood K, Martin E (2003) Inhibition of human cholinesterases by drugs used to treat Alzheimer disease. Alzheimer Dis Assoc Disord 17(2):117–126

    Article  CAS  PubMed  Google Scholar 

  • De Jaco A, Dubi N, Camp S, Taylor P (2012) Congenital hypothyroidism mutations affect common folding and trafficking in the α-hydrolase-fold proteins. FEBS J 279:4293–4305

    Article  PubMed  Google Scholar 

  • Doorn JA, Schall M, Gage DA, Talley TT, Thompson CM, Richardson RJ (2001) Identification of butyrylcholinesterase adducts after inhibition with isomalathion using mass spectrometry: difference in mechanism between (1R)- and (1S)-stereoisomers. Toxicol Appl Pharmacol 176(2):73–80

    Article  CAS  PubMed  Google Scholar 

  • Duysen EG, Li B, Lockridge O (2009) The butyrylcholinesterase knockout mouse are search tool in the study of drug sensitivity, bio-distribution, obesity and Alzheimer’s disease. Expert Opin Drug Metab Toxicol 5(5):523–528

    Article  CAS  PubMed  Google Scholar 

  • Escudero MA, Céspedes MV, Vilanova E (1997) Chromatographic discrimination of soluble neuropathy target esterase isoenzymes and related phenyl valerate esterases from chicken brain, spinal cord, and sciatic nerve. J Neurochem 68(5):2170–2176

    Article  CAS  PubMed  Google Scholar 

  • Estévez J, García-Pérez AG, Barril J, Pellín M, Vilanova E (2004) The inhibition of the high sensitive peripheral nerve soluble esterases by mipafox. A new mathematical processing for the kinetics of inhibition of esterases by organophosphorus compounds. Toxicol Lett 151(1):171–181

    Article  PubMed  Google Scholar 

  • Estévez J, Barril J, Vilanova E (2010) Inhibition with spontaneous reactivation and the “ongoing inhibition” effect of esterases by biotinylated organophosphorus compounds: S9B as a model. Chem Biol Interact 187(1–3):397–402

    Article  PubMed  Google Scholar 

  • Estévez J, García-Pérez A, Barril J, Vilanova E (2011) Inhibition with spontaneous reactivation of carboxyl esterases by organophosphorus compounds: paraoxon as a model. Chem Res Toxicol 24(1):135–143

    Article  PubMed  Google Scholar 

  • Furlong CE (2011) Exposure to triaryl phosphates: metabolism and biomarkers of exposure. J Biol Phys Chem 11. doi:10.4024/28FU11A.jbpc.11.04

  • García-Pérez AG, Barril J, Estévez J, Vilanova E (2003) Properties of phenyl valerate esterase activities from chicken serum are comparable with soluble esterases of peripheral nerves in relation with organophosphorus compounds inhibition. Toxicol Lett 142(1–2):1–10

    Article  PubMed  Google Scholar 

  • Giacobini E (2003) Cholinesterases: new roles in brain function and in Alzheimer's disease. Neurochem Res 28(3–4):515–522

    Article  CAS  PubMed  Google Scholar 

  • Glynn P, Read DJ, Guo R, Wylie S, Johnson MK (1994) Synthesis and characterization of a biotinylated organophosphorus ester for detection and affinity purification of a brain serine esterase: neuropathy target esterase. Biochem J 301(Pt 2):551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glynn P, Holton JL, Nolan CC, Read DJ, Brown L, Hubbard A, Cavanagh JB (1998) Neuropathy target esterase: immunolocalization to neuronal cell bodies and axons. Neurosci 83(1):295–302

    Article  CAS  Google Scholar 

  • Glynn P, Read DJ, Lush MJ, Li Y, Atkins J (1999) Molecular cloning of neuropathy target esterase (NTE). Chem Biol Interact 14(119–120):513–517

    Article  Google Scholar 

  • Grigoryan H, Schopfer LM, Peeples ES, Duysen EG, Grigoryan M, Thompson CM, Lockridge O (2009) Mass spectrometry identifies multiple organophosphorylated sites on tubulin. Toxicol Appl Pharmacol 240(2):149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Betts GN, Barnes H, Ghassemian M, van der Geer P, Komives EA (2009) Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics 9(22):5016–5028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harel M, Sussman JL, Krejci E, Bon S, Chanal P, Massoulié J, Silman I (1992) Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Proc Natl Acad Sci USA 89(22):10827–10831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haux JE, Quistad GB, Casida JE (2000) Phosphobutyrylcholinesterase: phosphorylation of the esteratic site of butyrylcholinesterase by ethephon [(2-chloroethyl)phosphonic acid] dianion. Chem Res Toxicol 13(7):646–651

    Article  CAS  PubMed  Google Scholar 

  • Hotelier T, Renault L, Cousin X, Negre V, Marchot P, Chatonnet A (2004) ESTHER, the database of the alpha/beta-hydrolase fold superfamily of proteins. Nucleic Acids Res 32((Database issue)):145–147

    Article  Google Scholar 

  • ICGSC (International Chicken Genome Sequencing Consortium) (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018):695–716

    Article  Google Scholar 

  • Jennings LL, Malecki M, Komives EA, Taylor P (2003) Direct analysis of the kinetic profiles of organophosphateacetylcholinesterase adducts by MALDI-TOF mass spectrometry. Biochemistry 42(37):11083–11091

    Article  CAS  PubMed  Google Scholar 

  • Johnson MK (1975) Structure-activity relationships for substrates and inhibitors of hen brain neurotoxic esterase. Biochem Pharmacol 24(7):797–805

    Article  CAS  PubMed  Google Scholar 

  • Johnson G, Moore SW (2012) Why has butyrylcholinesterase been retained? Structural and functional diversification in a duplicated gene. Neurochem Int 61(5):783–797

    Article  CAS  PubMed  Google Scholar 

  • Kalow W, Gunn DR (1957) The relation between dose of succinylcholine and duration of apnea in man. J Pharmacol Exp Ther 120(2):203–214

    CAS  PubMed  Google Scholar 

  • Kalow W, Gunn DR (1959) Some statistical data on atypical cholinesterase of human serum. Ann Hum Genet 23:239–250

    Article  CAS  PubMed  Google Scholar 

  • Kraut D, Goff H, Pai RK, Hosea NA, Silman I, Sussman JL, Taylor P, Voet JG (2000) Inactivation studies of acetylcholinesterase with phenylmethylsulfonyl fluoride. Mol Pharmacol 57(6):1243–1248

    CAS  PubMed  Google Scholar 

  • La Du BN, Bartels CF, Nogueira CP, Hajra A, Lightstone H, Van der Spek A, Lockridge O (1990) Phenotypic and molecular biological analysis of human butyrylcholinesterase variants. Clin Biochem 23(5):423–431

    Article  PubMed  Google Scholar 

  • Lenfant N, Hotelier T, Bourne Y, Marchot P, Chatonnet A (2013) Proteins with an alpha/beta hydrolase fold: relationships between subfamilies in an ever-growing superfamily. Chem Biol Interact 203(1):266–268

    Article  CAS  PubMed  Google Scholar 

  • Li B, Duysen EG, Saunders TL, Lockridge O (2006) Production of the butyrylcholinesterase knockout mouse. J Mol Neurosci 30(1–2):193–195

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Tabb DL, Yates JR 3rd (2003) Large-scale protein identification using mass spectrometry. Biochim Biophys Acta 1646(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  • Lockridge O (1990) Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol Ther 47(1):35–60

    Article  CAS  PubMed  Google Scholar 

  • Lockridge O, Schopfer LM (2006) Biomarkers of exposure. In: Gupta RC (ed) Toxicology of organophosphate and carbamate compounds. Academic Press, San Diego, pp 703–715

    Chapter  Google Scholar 

  • Long JZ, Cravatt BF (2011) The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 111(10):6022–6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie Ross SJ, Brewin CR, Curran HV, Furlong CE, Abraham-Smith KM, Harrison V (2010) Neuropsychological and psychiatric functioning in sheep farmers exposed to low levels of organophosphate pesticides. Neurotoxicol Teratol 32(4):452–459

    Article  CAS  PubMed  Google Scholar 

  • Mangas I, Vilanova E, Estévez J (2011) Kinetics of the inhibitory interaction of organophosphorus neuropathy inducers and non-inducers in soluble esterases in the avian nervous system. Toxicol Appl Pharmacol 256(3):360–368

    Article  CAS  PubMed  Google Scholar 

  • Mangas I, Vilanova E, Estévez J (2012a) NTE and non-NTE esterases in brain membrane: kinetic characterization with organophosphates. Toxicology 297(1–3):17–25

    Article  CAS  PubMed  Google Scholar 

  • Mangas I, Vilanova E, Estévez J (2012b) Phenylmethylsulfonyl fluoride, a potentiator of neuropathy, alters the interaction of organophosphorus compounds with soluble brain esterases. Chem Res Toxicol 25(11):2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Mangas I, Vilanova E, Benabent M, Estévez J (2014a) Separating esterase targets of organophosphorus compounds in the brain by preparative chromatography. Toxicol Lett 225(1):167–176

    Article  CAS  PubMed  Google Scholar 

  • Mangas I, Vilanova E, Estévez J (2014b) Kinetic interactions of a neuropathy potentiator (phenylmethylsulfonyl fluoride) with the neuropathy target esterase and other membrane bound esterases. Arch Toxicol 88(2):355–366

    Article  CAS  PubMed  Google Scholar 

  • Mangas I, Taylor P, Vilanova E, Estévez J, Franca TCC, Komives E, Radić Z (2015) Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches. Arch Toxicol. doi:10.1007/s00204-015-1481-1

  • Massoulié J (2002) The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11(3):130–143

    Article  PubMed  Google Scholar 

  • McCormack AL, Schieltz DM, Goode B, Yang S, Barnes G, Drubin D, Yates JR (1997) Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal Chem 69(4):767–776

    Article  CAS  PubMed  Google Scholar 

  • McDaniel KL, Moser VC (2004) Differential profiles of cholinesterase inhibition and neurobehavioral effects in rats exposed to fenamiphos or profenofos. Neurotoxicol Teratol 26(3):407–415

    Article  CAS  PubMed  Google Scholar 

  • Myers A, Richmond RC, Oakeshott JG (1988) On the origins of esterases. Mol Biol Evol 5(2):113–119

    CAS  PubMed  Google Scholar 

  • Pope CN (1999) Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health B Crit Rev 2(2):161–181

    Article  CAS  PubMed  Google Scholar 

  • Randell EW, Mathews MS, Zhang H, Seraj JS, Sun G (2005) Relationship between serum butyrylcholinesterase and the metabolic syndrome. Clin Biochem 38(9):799–805

    Article  CAS  PubMed  Google Scholar 

  • Silman I, Sussman JL (2008) Acetylcholinesterase: how is structure related to function? Chem Biol Interact 175(1–3):3–10

    Article  CAS  PubMed  Google Scholar 

  • Taylor P (2011) Anticholinesterase agents. In: Hardman JG, Limbird LE (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw-Hill, New York, pp 175–191

    Google Scholar 

  • Terry AV (2012) Functional consequences of repeated organophosphate exposure: potential non-cholinergic mechanisms. Pharmacol Ther 134(3):355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valle AM, Radic Z, Rana BK, Mahboubi V, Wessel J, Shih PA, Rao F, O’Connor DT, Taylor P (2011) Naturally occurring variations in the human cholinesterase genes: heritability and association with cardiovascular and metabolic traits. J Pharmacol Exp Ther 338(1):125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilanova E, Barril J, Carrera V, Pellin MC (1990) Soluble and particulate forms of the organophosphorus neuropathy target esterase in hen sciatic nerve. J Neurochem 55(4):1258–1265

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Mangas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangas, I., Radić, Z., Taylor, P. et al. Butyrylcholinesterase identification in a phenylvalerate esterase-enriched fraction sensitive to low mipafox concentrations in chicken brain. Arch Toxicol 91, 909–919 (2017). https://doi.org/10.1007/s00204-016-1670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1670-6

Keywords

Navigation