Skip to main content

Advertisement

Log in

Acute and long-term in vitro effects of zinc oxide nanoparticles

  • Nanotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Since most of the toxic studies of zinc oxide nanoparticles (ZnO NPs) focused on acute and high-dose exposure conditions, the aim of the present study was to fill the existing knowledge gap of long-term effects of ZnO NPs at sub-toxic doses. To overcome this point, we have evaluated the toxic, genotoxic, and carcinogenic effects of ZnO NPs under long-term treatments (12 weeks), using a sub-toxic dose (1 µg/mL) according to acute 48-h exposure. Preliminarily, oxidative stress and genotoxic/oxidative DNA damage were determined under acute exposure and high-dose conditions. To determine the role of oxidative DNA damage, a wild-type mouse embryonic fibroblast (MEF Ogg1 +/+) and its isogenic 8-oxo-guanine DNA glycosylase 1 (Ogg1) knockout partner (MEF Ogg1 /) cell lines were used. Although short-term exposure (24-h) experiments demonstrated that ZnO NPs were able to induce ROS, genotoxicity, and oxidative DNA damage in both cell lines, no effects were obtained under long-term exposure scenario. Thus, 1 µg/mL exposure over 12 weeks was unable to induce genotoxicity as well as cellular transformation in both cell types, as indicated by the lack of observed morphological cell changes, variations in the secretion of matrix metalloproteinases, and anchorage-independent cell growth ability, regarded as cancer-like phenotypic hallmarks. Our results indicate that short-term effects of ZnO NP exposure are not replicated under long-term and sub-toxic dose conditions. All together, the lack of genotoxic/carcinogenic effects after chronic treatments seem to indicate a reduced risk associated with ZnO NP exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamcakova-Dodd A, Stebounova LV, Kim JS, Vorrink SU, Ault AP, O’Shaughnessy PT, Grassian VH, Thorne PS (2014) Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part Fibre Toxicol 11:15

    Article  Google Scholar 

  • Annangi B, Bach J, Vales G, Rubio L, Marcos R, Hernández A (2015) Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage. Nanotoxicology 9:138–147

    Article  CAS  Google Scholar 

  • Aueviriyavit S, Phummiratch D, Maniratanachote R (2014) Mechanistic study on the biological effects of silver and gold nanoparticles in Caco-2 cells–induction of the Nrf2/HO-1 pathway by high concentrations of silver nanoparticles. Toxicol Lett 224:73–83

    Article  CAS  Google Scholar 

  • Bach J, Sampayo-Reyes A, Marcos R, Hernandez A (2014) Ogg1 genetic background determines the genotoxic potential of environmentally relevant arsenic exposures. Arch Toxicol 88:585–596

    CAS  PubMed  Google Scholar 

  • Clancy HA, Sun H, Passantino L, Kluz T, Muñoz A, Zavadil J, Costa M (2012) Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics 4:784–793

    Article  CAS  Google Scholar 

  • Creton S, Aardema MJ, Carmichael PL, Harvey JS, Martin FL, Newbold RF, O’Donovan MR, Pant K, Poth A, Sakai A, Sasaki K, Scott AD, Schechtman LM, Shen RR, Tanaka N, Yasaei H (2012) Cell transformation assays for prediction of carcinogenic potential: state of the science and future research needs. Mutagenesis 27:93–101

    Article  CAS  Google Scholar 

  • ECVAM (2011) Recommendation concerning the cell transformation assays using Syrian hamster embryo cells (SHE) and the BALB/c 3T3 mouse fibroblast cell line for in vitro carcinogenicity testing. Annex I: ESAC opinion on the ESAC peer review of an ECVAM-coordinated prevalidation study concerning three protocols of the cell transformation assay (CTA) for in vitro carcinogenicity testing. http://ihcp.jrc.ec.europa.eu/ouractivities/alt-animal-testing/

  • Eisen EA, Costello S, Chevrier J, Picciotto S (2011) Epidemiologic challenges for studies of occupational exposure to engineered nanoparticles; a commentary. J Occup Environ Med 53(6 Suppl):S57–S61

    Article  Google Scholar 

  • Frampton MW (2007) Does inhalation of ultrafine particles cause pulmonary vascular effects in humans? Inhal Toxicol 19(Suppl 1):75–79

    Article  CAS  Google Scholar 

  • Gerloff K, Albrecht C, Boots AW, Förster I, Schins RP (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 3:355–364

    Article  CAS  Google Scholar 

  • Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409

    Article  CAS  Google Scholar 

  • Guan R, Kang T, Lu F, Zhang Z, Shen H, Liu M (2012) Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett 7:602

    Article  Google Scholar 

  • Hackenberg S, Zimmermann FZ, Scherzed A, Friehs G, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N (2011) Repetitive exposure to zinc oxide nanoparticles induces DNA damage in human nasal mucosa mini organ cultures. Environ Mol Mutagen 52:582–589

    Article  CAS  Google Scholar 

  • Hackenberg S, Scherzed A, Technau A, Froelich K, Hagen R, Kleinsasser N (2013) Functional responses of human adipose tissue derived mesenchymal stem cells to metal oxide nanoparticles in vitro. J Biomed Nanotechnol 9:86–95

    Article  CAS  Google Scholar 

  • Hristozov DR, Gottardo S, Critto A, Marcomini A (2012) Risk assessment of engineered nanomaterials: a review of available data and approaches from a regulatory perspective. Nanotoxicology 6:880–898

    Article  CAS  Google Scholar 

  • Huang S, Chueh PJ, Lin YW, Shih TS, Chuang SM (2009) Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol Appl Pharmacol 241:182–194

    Article  CAS  Google Scholar 

  • Jacobsen NR, Saber AT, White P, Møller P, Pojana G, Vogel U, Loft S, Gingerich J, Soper L, Douglas GR, Wallin H (2007) Increased mutant frequency by carbon black, but not quartz, in the lacZ and cII transgenes of muta mouse lung epithelial cells. Environ Mol Mutagen 48:451–461

    Article  CAS  Google Scholar 

  • Johnson BM, Fraietta JA, Gracias DT, Hope JL, Stairiker CJ, Patel PR, Mueller YM, McHugh MD, Jablonowski LJ, Wheatley MA, Katsikis PD (2015) Acute exposure to ZnO nanoparticles induces autophagic immune cell death. Nanotoxicology 9:737–748

    Article  CAS  Google Scholar 

  • Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS (2012) Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125:462–472

    Article  CAS  Google Scholar 

  • Kermanizadeh A, Gaiser BK, Hutchison GR, Stone V (2012) An in vitro liver model-assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part Fibre Toxicol 9:28

    Article  CAS  Google Scholar 

  • Khatri M, Bello D, Gaines P, Martin J, Pal AK, Gore R, Woskie S (2013) Nanoparticles from photocopiers induce oxidative stress and upper respiratory tract inflammation in healthy volunteers. Nanotoxicology 7:1014–1027

    Article  CAS  Google Scholar 

  • Klungland A, Bjelland S (2007) Oxidative damage to purines in DNA: role of mammalian Ogg1. DNA Repair 6:481–488

    Article  CAS  Google Scholar 

  • Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci USA 96:13300–13305

    Article  CAS  Google Scholar 

  • Kocbek P, Teskac K, Kreft ME, Kristl J (2010) Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 6:1908–1917

    Article  CAS  Google Scholar 

  • Li N, Nel AE (2011) Feasibility of biomarker studies for engineered nanoparticles: what can be learned from air pollution research? J Occup Environ Med 53(6 Suppl):S74–S79

    Article  CAS  Google Scholar 

  • Lohcharoenkal W, Wang L, Stueckle TA, Dinu CZ, Castranova V, Liu Y, Rojanasakul Y (2013) Chronic exposure to carbon nanotubes induces invasion of human mesothelial cells through matrix metalloproteinase-2. ACS Nano 7:7711–7723

    Article  CAS  Google Scholar 

  • Maynard AD, Pui DYH (2007) Nanotechnology and occupational health: new technologies, new challenges. In: Maynard AD, Pui DYH (eds) Nanoparticles and occupational health. Springer, Dordrecht, pp 1–3

    Google Scholar 

  • Murphy G, Willenbrock F, Crabbe T, O’Shea M, Ward R, Atkinson S, O’Connell J, Docherty A (1994) Regulation of matrix metalloproteinase activity. Ann N Y Acad Sci 732:31–41

    Article  CAS  Google Scholar 

  • Mussá T, Rodríguez-Cariño C, Sánchez-Chardi A, Baratelli M, Costa-Hurtado M, Fraile L, Domínguez J, Aragon V, Montoya M (2012) Differential interactions of virulent and nonvirulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells. Vet Res 43:80

    Article  Google Scholar 

  • Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo onthe skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277

    Article  CAS  Google Scholar 

  • OECD (2013) In vitro carcinogenicity: Syrian hamster embryo (SHE) cell transformation assay. Draft test guideline. http://www.oecd.org/env/ehs/testing/Draft-GD-SHE-CTA-July2014-version-compare-OLIS-doc-WNT-26.pdf

  • Oum’hamed Z, Garnotel R, Josset Y, Trenteseaux C, Laurent-Maquin D (2004) Matrix metalloproteinases MMP-2, -9 and tissue inhibitors TIMP-1,-2 expression and secretion by primary human osteoblast cells in response to titanium, zirconia, and alumina ceramics. J Biomed Mater Res A 68:114–122

    Article  Google Scholar 

  • Parsons SL, Watson SA, Brown PD, Collins HM, Steele RJ (1997) Matrix metalloproteinases. Br J Surg 84:160–166

    Article  CAS  Google Scholar 

  • Qi Q, Zhang T, Yu Q, Wang R, Zeng Y, Liu L (2008) Properties of humidity sensing ZnO nanorods-base sensor fabricated by screenprinting. Sens Actuators B Chem 133:638–643

    Article  CAS  Google Scholar 

  • Rodríguez-Cariño C, Duffy C, Sánchez-Chardi A, McNeilly F, Allan GM, Segalés J (2011) Porcine circovirus type 2 morphogenesis in a clone derived from the l35 lymphoblastoid cell line. J Comp Pathol 144:91–102

    Article  Google Scholar 

  • Roy R, Singh SK, Chauhan LK, Das M, Tripathi A, Dwivedi PD (2014) Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol Lett 227:29–40

    Article  CAS  Google Scholar 

  • Sampath H, Vartanian V, Rollins MR, Sakumi K, Nakabeppu Y, Lloyd RS (2012) 8-Oxoguanine DNA glycosylase (OGG1) deficiency increases susceptibility to obesity and metabolic dysfunction. PLoS ONE 7:e51697

    Article  CAS  Google Scholar 

  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218

    Article  CAS  Google Scholar 

  • Sharma V, Anderson D, Dhawan A (2011) Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). J Biomed Nanotechnol 7:98–99

    Article  CAS  Google Scholar 

  • Shinmura K, Yokota J (2001) The OGG1 gene encodes a repair enzyme for oxidatively damaged DNA and is involved in human carcinogenesis. Antioxid Redox Signal 3:597–609

    Article  CAS  Google Scholar 

  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  CAS  Google Scholar 

  • Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, Sun Z (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199:389–397

    Article  CAS  Google Scholar 

  • Toyokuni S (1998) Oxidative stress and cancer: the role of redox regulation. Biotherapy 11:147–154

    Article  CAS  Google Scholar 

  • Vales G, Rubio L, Marcos R (2015) Long-term exposures to low doses of titanium dioxide nanoparticles induce cell transformation, but not genotoxic damage in BEAS-2B cells. Nanotoxicology 9:568–578

    Article  CAS  Google Scholar 

  • Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71

    Article  CAS  Google Scholar 

  • Vasseur P, Lasne C (2012) OECD detailed review paper (DRP) number 31 on ‘‘cell transformation assays for detection of chemical carcinogens’’: main results and conclusions. Mutat Res 744:8–11

    Article  CAS  Google Scholar 

  • Wang L, Luanpitpong S, Castranova V, Tse W, Lu Y, Pongrakhananon V, Rojanasakul Y (2011) Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. Nano Lett 11:2796–2803

    Article  CAS  Google Scholar 

  • Wang L, Stueckle TA, Mishra A, Derk R, Meighan T, Castranova V, Rojanasakul Y (2014) Neoplastic-like transformation effect of single-walled and multiwalled carbon nanotubes compared to asbestos on human lung small airway epithelial cells. Nanotoxicology 8:485–507

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  Google Scholar 

  • Xia T, Li N, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150

    Article  Google Scholar 

  • Yang H, Liu C, Yang DF, Zhang HS, Xi ZG (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78

    Article  Google Scholar 

  • Yu KN, Yoon TJ, Minai-Tehrani A, Kim JE, Park SJ, Jeong MS, Ha SW, Lee JK, Kim JS, Cho MH (2013) Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol In Vitro 27:1187–1195

    Article  CAS  Google Scholar 

  • Yusuf B, Gopurappilly R, Dadheech N, Gupta S, Bhonde R, Pal R (2013) Embryonic fibroblasts represent a connecting link between mesenchymal and embryonic stem cells. Dev Growth Differ 55:330–340

    Article  CAS  Google Scholar 

  • Zhang H, Chen B, Jiang H, Wang C, Wang H, Wang X (2011) A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 32:1906–1914

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.A was supported by a postdoctoral fellowship from the Universitat Autònoma de Barcelona (UAB). L.R and J.B were supported by UAB PIF fellowships. This work was partially supported by the ‘Generalitat de Catalunya’ (2014SGR-205), the ‘UAB’ (APOSTA-2011) and the EU Project NANoREG (Grant Agreement NMP4-LA-2013-310584).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ricard Marcos or Alba Hernández.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3634 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annangi, B., Rubio, L., Alaraby, M. et al. Acute and long-term in vitro effects of zinc oxide nanoparticles. Arch Toxicol 90, 2201–2213 (2016). https://doi.org/10.1007/s00204-015-1613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1613-7

Keywords

Navigation