Skip to main content

Advertisement

Log in

Towards understanding of nanoparticle–protein corona

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

With the rapid developments of nanotechnology, chances of exposing nanoscale particles to humans (e.g., workers and consumers) also increase correspondingly, which raises serious concerns on their biosafety. Entrance of nanoparticles into diverse biological environment endows them with new and dynamic biological identities as the so-called nanoparticle–protein corona. Therefore, understanding the role of these nanoparticle–protein coronas and resulting biological responses is crucial, as it helps to clarify the biological mechanism and prevent the potential adverse effects of nanoparticles. In this review, we summarize the latest developments relating to the nanoparticle–protein interaction and corresponding biological responses, with an emphasis on the characterization methods, induced biological effects and possible molecular mechanisms. In addition, we overview both the challenges and opportunities (particularly in nanomedicine) raised by this entrance of nanoparticles into the living creatures, especially human beings, with some future perspectives based on our understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Alsteens D, Trabelsi H, Soumillion P, Dufrêne YF (2013) Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat Commun. doi:10.1038/ncomms3926

    PubMed  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867. doi:10.1074/mcp.R200007-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Babič M, Horák D, Jendelová P et al (2009) Poly(N, N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconj Chem 20(2):283–294. doi:10.1021/bc800373x

    Article  Google Scholar 

  • Bastús NG, Sánchez-Tilló E, Pujals S et al (2009) Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response. ACS Nano 3(6):1335–1344. doi:10.1021/nn8008273

    Article  PubMed  Google Scholar 

  • Buijs J, Ramström M, Danfelter M, Larsericsdotter H, Håkansson P, Oscarsson S (2003) Localized changes in the structural stability of myoglobin upon adsorption onto silica particles, as studied with hydrogen/deuterium exchange mass spectrometry. J Colloid Interf Sci 263(2):441–448. doi:10.1016/S0021-9797(03)00401-6

    Article  CAS  Google Scholar 

  • Cai XN, Ramalingam R, Wong HS et al (2013) Characterization of carbon nanotube protein corona by using quantitative proteomics. Nanomed-Nanotechnol 9(5):583–593. doi:10.1016/j.nano.2012.09.004

    Article  CAS  Google Scholar 

  • Calvaresi M, Arnesano F, Bonacchi S et al (2014) C60@Lysozyme: direct observation by nuclear magnetic resonance of a 1:1 fullerene protein adduct. ACS Nano 8(2):1871–1877. doi:10.1021/nn4063374

    Article  CAS  PubMed  Google Scholar 

  • Cedervall T, Lynch I, Lindman S et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055. doi:10.1073/pnas.0608582104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang TY, Chang CC, Ohgami N, Yamauchi Y (2006) Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol 22:129–157. doi:10.1146/annurev.cellbio.22.010305.104656

    Article  CAS  PubMed  Google Scholar 

  • Cho EC, Xie J, Wurm PA, Xia Y (2009) Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett 9(3):1080–1084

    Article  CAS  PubMed  Google Scholar 

  • Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5(7):374–381

    Article  CAS  PubMed  Google Scholar 

  • Curtiss LK, Witztum JL (1985) Plasma apolipoproteins AI, AII, B, CI, and E are glucosylated in hyperglycemic diabetic subjects. Diabetes 34(5):452–461. doi:10.2337/diab.34.5.452

    Article  CAS  PubMed  Google Scholar 

  • Dashti M, Kulik W, Hoek F, Veerman EC, Peppelenbosch MP, Rezaee F (2011) A phospholipidomic analysis of all defined human plasma lipoproteins. Sci Rep. http://www.nature.com/srep/2011/111107/srep00139/abs/srep00139.html#supplementary-information

  • Dashty M, Motazacker MM, Levels J et al (2014) Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism. Thromb Haemost 111(3):518–530. doi:10.1160/TH13-02-0178

    Article  CAS  PubMed  Google Scholar 

  • De Paoli SH, Diduch LL, Tegegn TZ et al (2014) The effect of protein corona composition on the interaction of carbon nanotubes with human blood platelets. Biomaterials 35(24):6182–6194. doi:10.1016/j.biomaterials.2014.04.067

    Article  PubMed  Google Scholar 

  • Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nano 6(1):39–44. http://www.nature.com/nnano/journal/v6/n1/abs/nnano.2010.250.html#supplementary-information

  • Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF (2012) Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 6(10):8962–8969. doi:10.1021/nn3029953

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37(5):326–333. doi:10.1021/Ar020204f

    Article  CAS  PubMed  Google Scholar 

  • Euliss LE, DuPont JA, Gratton S, DeSimone JM (2006) Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35(11):1095–1104. doi:10.1039/B600913c

    Article  CAS  PubMed  Google Scholar 

  • Faklaris O, Joshi V, Irinopoulou T et al (2009) Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3(12):3955–3962

    Article  CAS  PubMed  Google Scholar 

  • Fleischer CC, Payne CK (2014a) Nanoparticle–cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res 47(8):2651–2659. doi:10.1021/ar500190q

    Article  CAS  PubMed  Google Scholar 

  • Fleischer CC, Payne CK (2014b) Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J Phys Chem B. doi:10.1021/jp502624n

    PubMed  Google Scholar 

  • Gaucher G, Asahina K, Wang JH, Leroux JC (2009) Effect of poly(N-vinyl-pyrrolidone)-block-poly(D, L-lactide) as coating agent on the opsonization, phagocytosis, and pharmacokinetics of biodegradable nanoparticles. Biomacromolecules 10(2):408–416. doi:10.1021/Bm801178f

    Article  CAS  PubMed  Google Scholar 

  • Ge C, Lao F, Li W et al (2008) Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Anal Chem 80(24):9426–9434. doi:10.1021/ac801469b

    Article  CAS  PubMed  Google Scholar 

  • Ge C, Du J, Zhao L et al (2011a) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci 108(41):16968–16973. doi:10.1073/pnas.1105270108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ge C, Li W, Li Y et al (2011b) Significance and systematic analysis of metallic impurities of carbon nanotubes produced by different manufacturers. J Nanosci Nanotechnol 11(3):2389–2397. doi:10.1166/jnn.2011.3520

    Article  CAS  PubMed  Google Scholar 

  • Ge C, Li Y, Yin J-J et al (2012a) The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. NPG Asia Mater 4:e32. doi:10.1038/am.2012.60

    Article  Google Scholar 

  • Ge C, Meng L, Xu L et al (2012b) Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicology 6(5):526–542. doi:10.3109/17435390.2011.587905

    Article  CAS  PubMed  Google Scholar 

  • Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7(12):3818–3821. doi:10.1021/nl072471q

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Anderson RG, Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279(5715):679–685

    Article  CAS  PubMed  Google Scholar 

  • Greenfield NJ (2007) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890. http://www.nature.com/nprot/journal/v1/n6/suppinfo/nprot.2006.202_S1.html

  • Gunawan C, Lim M, Marquis CP, Amal R (2014) Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J Mater Chem B 2(15):2060–2083. doi:10.1039/C3TB21526A

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573. doi:10.1016/j.biomaterials.2004.05.022

    Article  CAS  PubMed  Google Scholar 

  • Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M (2014) Personalized protein coronas: a “key” factor at the nanobiointerface. Biomater Sci 2(9):1210–1221. doi:10.1039/C4BM00131A

    Article  CAS  Google Scholar 

  • Hall CE, Slayter HS (1959) The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol 5(1):11–27. doi:10.1083/jcb.5.1.11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helm CA, Israelachvili JN, McGuiggan PM (1989) Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 246(4932):919–922

    Article  CAS  PubMed  Google Scholar 

  • Helm CA, Israelachvili JN, McGuiggan PM (1992) Role of hydrophobic forces in bilayer adhesion and fusion. Biochemistry 31(6):1794–1805. doi:10.1021/bi00121a030

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Peng C, Lv M et al (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700. doi:10.1021/nn200021j

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, KimBetty YS, Rutka JT, ChanWarren CW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nano 3(3):145–150. http://www.nature.com/nnano/journal/v3/n3/suppinfo/nnano.2008.30_S1.html

  • Jiang X, Röcker C, Hafner M, Brandholt S, Dörlich RM, Nienhaus GU (2010) Endo-and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 4(11):6787–6797

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Cruz CA, Kang SG, Zhou RH (2014) Large scale molecular simulations of nanotoxicity. Wires Syst Biol Med 6(4):265–279. doi:10.1002/Wsbm.1271

    Google Scholar 

  • Jin H, Heller DA, Strano MS (2008) Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 8(6):1577–1585

    Article  PubMed  Google Scholar 

  • Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K (2007) Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release 118(1):54–58. doi:10.1016/j.jconrel.2006.12.012

    Article  CAS  PubMed  Google Scholar 

  • Krpetic Z, Porta F, Caneva E, Dal Santo V, Scarì G (2010) Phagocytosis of biocompatible gold nanoparticles. Langmuir 26(18):14799–14805

    Article  CAS  PubMed  Google Scholar 

  • Laera S, Ceccone G, Rossi F et al (2011) Measuring protein structure and stability of protein–nanoparticle systems with synchrotron radiation circular dichroism. Nano Lett 11(10):4480–4484. doi:10.1021/nl202909s

    Article  CAS  PubMed  Google Scholar 

  • Lai ZW, Yan Y, Caruso F, Nice EC (2012) Emerging techniques in proteomics for probing nano–bio interactions. ACS Nano 6(12):10438–10448. doi:10.1021/nn3052499

    CAS  PubMed  Google Scholar 

  • Laurent S, Burtea C, Thirifays C, Rezaee F, Mahmoudi M (2013a) Significance of cell “observer” and protein source in nanobiosciences. J Colloid Interf Sci 392:431–445. doi:10.1016/j.jcis.2012.10.005

    Article  CAS  Google Scholar 

  • Laurent S, Ng EP, Thirifays C et al (2013b) Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions. Toxicol Res 2(4):270–279. doi:10.1039/C3TX50023C

    Article  CAS  Google Scholar 

  • Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7):5845–5857. doi:10.1021/nn300223w

    Article  CAS  PubMed  Google Scholar 

  • Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135(4):1438–1444. doi:10.1021/ja309812z

    Article  CAS  PubMed  Google Scholar 

  • Limbach LK, Li Y, Grass RN et al (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39(23):9370–9376

    Article  CAS  PubMed  Google Scholar 

  • Lishko VK, Kudryk B, Yakubenko VP, Yee VC, Ugarova TP (2002) Regulated unmasking of the cryptic binding site for integrin αMβ2 in the γC-domain of fibrinogen†. Biochemistry 41(43):12942–12951. doi:10.1021/bi026324c

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist M (2013) Nanoparticles: tracking protein corona over time. Nat Nanotechnol 8(10):701–702. doi:10.1038/nnano.2013.196

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270. doi:10.1073/pnas.0805135105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lunov O, Syrovets T, Loos C et al (2011) Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5(3):1657–1669. doi:10.1021/nn2000756

    Article  CAS  PubMed  Google Scholar 

  • Lynch I (2007) Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein–material interface. Phys A Stat Mech Appl 373:511–520. doi:10.1016/j.physa.2006.06.008

    Article  CAS  Google Scholar 

  • Maiorano G, Sabella S, Sorce B et al (2010) Effects of cell culture media on the dynamic formation of protein–nanoparticle complexes and influence on the cellular response. ACS Nano 4(12):7481–7491. doi:10.1021/nn101557e

    Article  CAS  PubMed  Google Scholar 

  • Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9(7):543–556

    Article  CAS  PubMed  Google Scholar 

  • Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML (2013) Protein corona significantly reduces active targeting yield. Chem Commun 49(25):2557–2559. doi:10.1039/C3CC37307J

    Article  CAS  Google Scholar 

  • Mok H, Bae KH, Ahn C-H, Park TG (2008) PEGylated and MMP-2 specifically DePEGylated quantum dots: comparative evaluation of cellular uptake. Langmuir 25(3):1645–1650. doi:10.1021/la803542v

    Article  Google Scholar 

  • Monopoli MP, Walczyk D, Campbell A et al (2011) Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534. doi:10.1021/ja107583h

    Article  CAS  PubMed  Google Scholar 

  • Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nano 7(12):779–786

    Article  CAS  Google Scholar 

  • Mortensen NP, Hurst GB, Wang W, Foster CM, Nallathamby PD, Retterer ST (2013) Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. Nanoscale 5(14):6372–6380. doi:10.1039/C3NR33280B

    Article  CAS  PubMed  Google Scholar 

  • Mosqueira VCF, Legrand P, Gulik A et al (2001) Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22(22):2967–2979. doi:10.1016/S0142-9612(01)00043-6

    Article  CAS  PubMed  Google Scholar 

  • Mu Q, Jiang G, Chen L et al (2014) Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114(15):7740–7781. doi:10.1021/cr400295a

    Article  CAS  PubMed  Google Scholar 

  • Nagayama S, K-i Ogawara, Fukuoka Y, Higaki K, Kimura T (2007a) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342(1):215–221. doi:10.1016/j.ijpharm.2007.04.036

    Article  CAS  PubMed  Google Scholar 

  • Nagayama S, K-i Ogawara, Minato K et al (2007b) Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor. Int J Pharm 329(1–2):192–198. doi:10.1016/j.ijpharm.2006.08.025

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Du X, Zhao F, Xu B (2012) Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev 41(7):2912–2942. doi:10.1039/c2cs15315g

    Article  CAS  PubMed  Google Scholar 

  • Prapainop K, Witter DP, Wentworth P (2012) A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins. J Am Chem Soc 134(9):4100–4103. doi:10.1021/ja300537u

    Article  CAS  PubMed  Google Scholar 

  • Queiroz KCS, Tio RA, Zeebregts CJ et al (2010) Human plasma very low density lipoprotein carries Indian Hedgehog. J Proteome Res 9(11):6052–6059. doi:10.1021/pr100403q

    Article  CAS  PubMed  Google Scholar 

  • Raemy DO, Limbach LK, Rothen-Rutishauser B et al (2011) Cerium oxide nanoparticle uptake kinetics from the gas-phase into lung cells in vitro is transport limited. Eur J Pharm and Biopharm 77(3):368–375. doi:10.1016/j.ejpb.2010.11.017

    Article  CAS  Google Scholar 

  • Rezaee F, Casetta B, Levels JHM, Speijer D, Meijers JCM (2006) Proteomic analysis of high-density lipoprotein. Proteomics 6(2):721–730. doi:10.1002/pmic.200500191

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Gil P, Jimenez De Aberasturi D, Wulf V et al (2012) The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res 46(3):743–749. doi:10.1021/ar300039j

    Article  PubMed  Google Scholar 

  • Rodahl M, Hook F, Fredriksson C et al (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246

    Article  CAS  PubMed  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592. doi:10.1039/B502142c

    Article  CAS  PubMed  Google Scholar 

  • Sacchetti C, Motamedchaboki K, Magrini A et al (2013) Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano 7(3):1974–1989. doi:10.1021/nn400409h

    Article  CAS  PubMed  Google Scholar 

  • Safi M, Courtois J, Seigneuret M, Conjeaud H, Berret JF (2011) The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32(35):9353–9363. doi:10.1016/j.biomaterials.2011.08.048

    Article  CAS  PubMed  Google Scholar 

  • Salvati A, Åberg C, dos Santos T et al (2011) Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomed Nanotechnol Biol Med 7(6):818–826

    Article  CAS  Google Scholar 

  • Salvati A, Pitek AS, Monopoli MP et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Saptarshi S, Duschl A, Lopata A (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11(1):26

    Article  CAS  Google Scholar 

  • Schrand AM, Lin JB, Hens SC, Hussain SM (2011) Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds. Nanoscale 3(2):435–445

    Article  CAS  PubMed  Google Scholar 

  • Sée V, Free P, Cesbron Y et al (2009) Cathepsin L digestion of nanobioconjugates upon endocytosis. ACS Nano 3(9):2461–2468. doi:10.1021/nn9006994

    Article  PubMed  Google Scholar 

  • Shang L, Nienhaus K, Nienhaus G (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12(1):5

    Article  Google Scholar 

  • Sharma S, Benson HAE, Mukkur TKS, Rigby P, Chen Y (2013) Preliminary studies on the development of IgA-loaded chitosan–dextran sulphate nanoparticles as a potential nasal delivery system for protein antigens. J Microencapsul 30(3):283–294. doi:10.3109/02652048.2012.726279

    Article  CAS  PubMed  Google Scholar 

  • Shi X, von Dem Bussche A, Hurt RH, Kane AB, Gao H (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6(11):714–719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shrivastava S, Nuffer JH, Siegel RW, Dordick JS (2012) Position-specific chemical modification and quantitative proteomics disclose protein orientation adsorbed on silica nanoparticles. Nano Lett 12(3):1583–1587. doi:10.1021/nl2044524

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar A, Karakoti A, Seal S, Self WT (2010) Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol BioSyst 6(10):1813–1820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song Y, Zhang Z, Elsayed-Ali HE et al (2011) Identification of single nanoparticles. Nanoscale 3(1):31–44. doi:10.1039/c0nr00412j

    CAS  Google Scholar 

  • Tedja R, Lim M, Amal R, Marquis C (2012) Effects of serum adsorption on cellular uptake profile and consequent impact of titanium dioxide nanoparticles on human lung cell lines. ACS Nano 6(5):4083–4093. doi:10.1021/nn3004845

    Article  CAS  PubMed  Google Scholar 

  • Tenzer S, Docter D, Rosfa S et al (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9):7155–7167. doi:10.1021/Nn201950e

    Article  CAS  PubMed  Google Scholar 

  • Tenzer S, Docter D, Kuharev J et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nano 8(10):772–781. doi:10.1038/nnano.2013.181

    Article  CAS  Google Scholar 

  • Tu Y, Lv M, Xiu P et al (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nano 8(8):594–601. doi:10.1038/nnano.2013.125

    Article  CAS  Google Scholar 

  • Vroman L, Adams AL, Fischer GC, Munoz PC (1980) Interaction of high molecular-weight kininogen, factor-Xii, and fibrinogen in plasma at interfaces. Blood 55(1):156–159

    CAS  PubMed  Google Scholar 

  • Wagner S, Zensi A, Wien SL, et al (2012) Uptake mechanism of apoe-modified nanoparticles on brain capillary endothelial cells as a blood–brain barrier model. Plos One. doi:10.1371/journal.pone.0032568

  • Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41(7):2780–2799. doi:10.1039/c1cs15233e

    Article  CAS  PubMed  Google Scholar 

  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW (2011) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147. doi:10.1021/ja2084338

    Article  Google Scholar 

  • Walrant A, Correia I, Jiao C-Y, et al (2011) Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. Biochimica et Biophysica Acta (BBA)-Biomembr 1808(1):382–393. doi:10.1016/j.bbamem.2010.09.009

  • Wang F, Yu L, Monopoli MP et al (2013a) The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomed Nanotechnol Biol Med 9(8):1159–1168. doi:10.1016/j.nano.2013.04.010

    Article  CAS  Google Scholar 

  • Wang L, Li J, Pan J et al (2013b) Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc 135(46):17359–17368. doi:10.1021/ja406924v

    Article  CAS  PubMed  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 89(5):392–400. doi:10.1002/bip.20853

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm C, Gazeau F, Roger J, Pons J, Bacri J-C (2002) Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18(21):8148–8155

    Article  CAS  Google Scholar 

  • Yang H, Fung S-Y, Liu M (2011) Programming the cellular uptake of physiologically stable peptide-gold nanoparticle hybrids with single amino acids. Angew Chem Int Ed 50(41):9643–9646. doi:10.1002/anie.201102911

    Article  CAS  Google Scholar 

  • Yuan H, Li J, Bao G, Zhang S (2010) Variable nanoparticle–cell adhesion strength regulates cellular uptake. Phys Rev Lett 105(13):138101

    Article  PubMed  Google Scholar 

  • Zhao YL, Xing GM, Chai ZF (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3(4):191–192. doi:10.1038/nnano.2008.77

    Article  CAS  PubMed  Google Scholar 

  • Zhou RH, Gao HJ (2014) Cytotoxicity of graphene: recent advances and future perspective. Wires Nanomed Nanobi 6(5):452–474. doi:10.1002/Wnan.1277

    Article  CAS  Google Scholar 

  • Zhu J, Zhang B, Tian J, Wang J, Chong Y, Wang X, Deng Y, Tang M, Li Y, Ge C, Pan Y, Gu H (2015) Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging. Nanoscale. doi:10.1039/C4NR07255C

  • Zuo GH, Kang SG, Xiu P, Zhao YL, Zhou RH (2013) Interactions between proteins and carbon-based nanoparticles: exploring the origin of nanotoxicity at the molecular level. Small 9(9–10):1546–1556. doi:10.1002/smll.201201381

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Basic Research Program of China (973 Program Grant No. 2014CB931900), National Natural Science Foundation of China (21207164), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifang Chai.

Additional information

Cuicui Ge and Jian Tian have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, C., Tian, J., Zhao, Y. et al. Towards understanding of nanoparticle–protein corona. Arch Toxicol 89, 519–539 (2015). https://doi.org/10.1007/s00204-015-1458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1458-0

Keywords

Navigation