Skip to main content

Advertisement

Log in

Superoxide deficiency attenuates promotion of hepatocarcinogenesis by cytotoxicity in NADPH oxidase knockout mice

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Long-term exposure to carcinogens combined with chronic hepatitis contributes greatly to the worldwide high incidence of hepatocellular carcinoma (HCC). It is still unclear to which extent the release of pro-inflammatory reactive oxygen or nitrogen species contributes to the development of this malignancy. Here, we aim to elucidate the role of superoxide in a model of chemical hepatocarcinogenesis. p47phox knockout mice (KO), lacking superoxide formation by phagocytic NADPH oxidase (phox), and wild-type animals (WT) were subjected to two different initiation–promotion protocols: (1) single dose of diethylnitrosamine (DEN) at 6 weeks of age followed by phenobarbital (PB) via diet, or ethanol (EtOH) in drinking water; (2) DEN at neonatal age followed by three cytotoxic doses of DEN at intervals of 6–7 weeks. The appearance of tumors and prestages was quantified. There was no obvious difference in the capacity of DEN to initiate hepatocarcinogenesis in KO and WT mice. PB promoted tumor development in both genotypes without significant difference. EtOH induced steatosis significantly less in KO than in WT liver, but had no effect on tumor formation in either genotype. However, hepatocarcinogenesis by three cytotoxic DEN doses after neonatal initiation was attenuated significantly in KO. Macrophages/monocytes identified by the specific antigen F4/80 were more abundant in KO than in WT liver, possibly reflecting a compensatory response. We conclude that phox-derived superoxide is not essential but is supportive for the promotion of hepatocarcinogenesis by cytotoxic doses of DEN. The production of superoxide may therefore contribute to the promotion of hepatocarcinogenesis by cytotoxic/pro-inflammatory stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BW:

Body weight

DEN:

Diethylnitrosamine

EtOH:

Ethanol

Exp:

Experiment

HCA:

Hepatocellular adenoma

HCC:

Hepatocellular carcinoma

KC:

Kupffer cell

KO:

phox−/− mice

n.s.:

Not significant

MC:

Mesenchymal liver cells

PB:

Phenobarbital

PBS:

Phosphate-buffered saline

phox:

Phagocytic NADPH oxidase

phox−/−:

p47 Phagocytic NADPH oxidase deficient

RLW:

Relative liver weight

ROS:

Reactive oxygen species

WT:

Wild-type mice

References

  • Ajakaiye M, Jacob A, Wu R, Nicastro JM, Coppa GF, Wang P (2011) Alcohol and hepatocyte-Kupffer cell interaction. Mol Med Rep 4(4):597–602

    CAS  PubMed  Google Scholar 

  • Bautista AP (1998) The role of Kupffer cells and reactive oxygen species in hepatic injury during acute and chronic alcohol intoxication. Alcohol Clin Exp Res 22(5 Suppl):255S–259S

    Article  CAS  PubMed  Google Scholar 

  • Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  CAS  PubMed  Google Scholar 

  • Beland FA, Benson RW, Mellick PW, Kovatch RM, Roberts DW, Fang JL, Doerge DR (2005) Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in B6C3F1 mice. Food Chem Toxicol 43(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Böhm T, Berger H, Nejabat M, Riegler T, Kellner F, Kuttke M, Sagmeister S, Bazanella M, Stolze K, Daryabeigi A, Bintner N, Murkovic M, Wagner KH, Schulte-Hermann R, Rohr-Udilova N, Huber W, Grasl-Kraupp B (2013) Food-derived peroxidized fatty acids may trigger hepatic inflammation: a novel hypothesis to explain steatohepatitis. J Hepatol 59(3):563–570

    Article  PubMed  Google Scholar 

  • Bonner MY, Arbiser JL (2012) Targeting NADPH oxidases for the treatment of cancer and inflammation. Cell Mol Life Sci 69(14):2435–2442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bursch W, Chabicovsky M, Wastl U, Grasl-Kraupp B, Bukowska K, Taper H, Schulte-Hermann R (2005) Apoptosis in stages of mouse hepatocarcinogenesis: failure to counterbalance cell proliferation and to account for strain differences in tumor susceptibility. Toxicol Sci 85(1):515–529

    Article  CAS  PubMed  Google Scholar 

  • Drucker C, Parzefall W, Teufelhofer O, Grusch M, Ellinger A, Schulte-Hermann R, Grasl-Kraupp B (2006) Non-parenchymal liver cells support the growth advantage in the first stages of hepatocarcinogenesis. Carcinogenesis 27(1):152–161

    Article  CAS  PubMed  Google Scholar 

  • Duffy MJ, McKiernan E, O’Donovan N, McGowan PM (2009) The role of ADAMs in disease pathophysiology. Clin Chim Acta 403:31–36

    Article  CAS  PubMed  Google Scholar 

  • Elcombe CR, Peffer RC, Wolf DC, Bailey J, Bars R, Bell D, Cattley RC, Ferguson SS, Geter D, Goetz A, Goodman JI, Hester S, Jacobs A, Omiecinski CJ, Schoeny R, Xie W, Lake BG (2014) Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: a case study with phenobarbital as a model constitutive androstane receptor (CAR) activator. Crit Rev Toxicol 44(1):64–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Enomoto N, Yamashina S, Kono H, Schemmer P, Rivera CA, Enomoto A, Nishiura T, Nishimura T, Brenner DA, Thurman RG (1999) Development of a new, simple rat model of early alcohol-induced liver injury based on sensitization of Kupffer cells. Hepatology 29(6):1680–1689

    Article  CAS  PubMed  Google Scholar 

  • Forner A, Llovet JM, Bruix J (2012) Hepatocellular carcinoma. Lancet 379(9822):1245–1255

    Article  PubMed  Google Scholar 

  • Freiler C, Brink A, Lutz WK, Kainzbauer E, Schulte-Hermann R, Parzefall W (2006) Hepatocarcinogenesis by diethylnitrosamine (DEN) in NADPH knock-out mice and their wild-type counterparts. Pharmacology 78:15

    Google Scholar 

  • Freiler C, Kainzbauer E, Schulte-Hermann R, Parzefall W (2007) iNOS expression and levels of nitric oxide in a hepatocarcinogenesis model of p47-NADPH knockout mice. BMC Pharmacol 7(Suppl 2):A68

    Article  Google Scholar 

  • Grasl-Kraupp B, Luebeck G, Wagner A, Löw-Baselli A, de Gunst M, Waldhör T, Moolgavkar S, Schulte-Hermann R (2000) Quantitative analysis of tumor initiation in rat liver: role of cell replication and cell death (apoptosis). Carcinogenesis 21(7):1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Hanigan MH, Winkler ML, Drinkwater NR (1993) Induction of three histochemically distinct populations of hepatic foci in C57BL/6J mice. Carcinogenesis 14(5):1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Jackson SH, Gallin JI, Holland SM (1995) The p47phox mouse knock-out model of chronic granulomatous disease. J Exp Med 182:751–755

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Zhang Y, Gregory J (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63:218–242

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama M (2010) Nox/Nadph oxidase, the superoxide-generating enzyme: its transcriptional regulation and physiological roles. J Pharmacol Sci 114:134–146

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita A, Wanibuchi H, Imaoka S, Ogawa M, Masuda C, Morimura K, Funae Y, Fukushima S (2002) Formation of 8-hydroxydeoxyguanosine and cell-cycle arrest in the rat liver via generation of oxidative stress by phenobarbital: association with expression profiles of p21(WAF1/Cip1), cyclin D1 and Ogg1. Carcinogenesis 23:341–349

    Article  CAS  PubMed  Google Scholar 

  • Kono H, Rusyn I, Yin M, Gäbele E, Yamashina S, Dikalova A, Kadiiska MB, Connor HD, Mason RP, Segal BH, Bradford BU, Holland SM, Thurman RG (2000) NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest 106(7):867–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kraupp-Grasl B, Huber W, Putz B, Gerbracht U, Schulte-Hermann R (1990) Tumor promotion by the peroxisome proliferator nafenopin involving a specific subtype of altered foci in rat liver. Cancer Res 50(12):3701–3708

    CAS  PubMed  Google Scholar 

  • Kroll B, Kunz S, Klein T, Schwarz LR (1999) Effect of lindane and phenobarbital on cyclooxygenase-2 expression and prostanoid synthesis by Kupffer cells. Carcinogenesis 20(8):1411–1418

    Article  CAS  PubMed  Google Scholar 

  • Kushida M, Wanibuchi H, Morimura K, Kinoshita A, Kang JS, Puatanachokchai R, Wei M, Funae Y, Fukushima S (2005) Dose-dependence of promotion of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline-induced rat hepatocarcinogenesis by ethanol: evidence for a threshold. Cancer Sci 96(11):747–757

    Article  CAS  PubMed  Google Scholar 

  • Laskin DL, Robertson FM, Pilaro AM, Laskin JD (1988) Activation of liver macrophages following phenobarbital treatment of rats. Hepatology 8(5):1051–1055

    Article  CAS  PubMed  Google Scholar 

  • Levin I, Petrasek J, Szabo G (2012) The presence of p47phox in liver parenchymal cells is a key mediator in the pathogenesis of alcoholic liver steatosis. Alcohol Clin Exp Res 36(8):1397–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lieber CS, DeCarli LM (1989) Recommended amounts of nutrients do not abate the toxic effects of an alcohol dose that sustains significant blood levels of ethanol. J Nutr 119(12):2038–2040

    CAS  PubMed  Google Scholar 

  • Lloyd CM, Phillips AR, Cooper GJ, Dunbar PR (2008) Three-colour fluorescence immunohistochemistry reveals the diversity of cells staining for macrophage markers in murine spleen and liver. J Immunol Methods 334(1–2):70–81

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Yang F, Huang SX, Kuang ZP, Luo XL, Li YD, Wu JN, Xie YA (2013) Two-stage model of chemically induced hepatocellular carcinoma in mouse. Oncol Res 20(11):517–528

    Article  CAS  PubMed  Google Scholar 

  • Macheiner D, Gauglhofer C, Rodgarkia-Dara C, Grusch M, Brachner A, Bichler C, Kandioler D, Sutterlüty H, Mikulits W, Schulte-Hermann R, Grasl-Kraupp B (2009) NORE1B is a putative tumor suppressor in hepatocarcinogenesis and may act via RASSF1A. Cancer Res 69(1):235–242

    Article  CAS  PubMed  Google Scholar 

  • Mensinga TT, Speijers GJ, Meulenbelt J (2003) Health implications of exposure to environmental nitrogenous compounds. Toxicol Rev 22:41–51

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki Y, Furukawa K, Sawada N, Gotoh M (1981) Dose-dependent enhancing effect of phenobarbital on hepatocarcinogenesis initiated by diethylnitrosamine in the rat. Gann 72:170–173

    CAS  PubMed  Google Scholar 

  • Nalesnik MA, Michalopoulos GK (2012) Growth factor pathways in development and progression of hepatocellular carcinoma. Front Biosci 4:1487–1515

    Article  Google Scholar 

  • Peraino C, Fry RJM, Staffeldt E (1973) Enhancement of spontaneous hepatic tumorigenesis in C3H mice by dietary phenobarbital. J Natl Cancer lnst 57:1349–1351

    Google Scholar 

  • Radike MJ, Stemmer KL, Bingham E (1981) Effect of ethanol on vinyl chloride carcinogenesis. Environ Health Perspect 41:59–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ross J, Plummer SM, Rode A, Scheer N, Bower CC, Vogel O, Henderson CJ, Wolf CR, Elcombe CR (2010) Human constitutive androstane receptor (CAR) and pregnane X receptor (PXR) support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogens phenobarbital and chlordane in vivo. Toxicol Sci 116(2):452–466

    Article  CAS  PubMed  Google Scholar 

  • Sagmeister S, Drucker C, Losert A, Grusch M, Daryabeigi A, Parzefall W, Rohr-Udilova N, Bichler C, Smedsrød B, Kandioler D, Grünberger T, Wrba F, Schulte-Hermann R, Grasl-Kraupp B (2008) HB-EGF is a paracrine growth stimulator for early tumor prestages in inflammation-associated hepatocarcinogenesis. J Hepatol 49(6):955–964

    Article  CAS  PubMed  Google Scholar 

  • Schulte-Hermann R, Bursch W, Grasl-Kraupp B (1995) Active cell death (apoptosis) in liver biology and disease. Prog Liver Dis 13:1–35

    CAS  PubMed  Google Scholar 

  • Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7(8):599–612

    Article  CAS  PubMed  Google Scholar 

  • Spencer NY, Zhou W, Li Q, Zhang Y, Luo M, Yan Z, Lynch TJ, Abbott D, Banfi B, Engelhardt JF (2013) Hepatocytes produce tnfα following hypoxia/reoxygenation and liver ischemia/reperfusion in a nadph oxidase- and c-src-dependent manner. J Physiol Gastrointest Liver Physiol 305(1):G84–G94

    Article  CAS  Google Scholar 

  • Stickel F, Schuppan D, Hahn EG, Seitz HK (2002) Cocarcinogenic effects of alcohol in hepatocarcinogenesis. Gut 51(1):132–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka T, Nishikawa A, Iwata H, Mori Y, Hara A, Hirono I, Mori H (1989) Enhancing effect of ethanol on aflatoxin B1-induced hepatocarcinogenesis in male ACI/N rats. Jpn J Cancer Res 80(6):526–530

    Article  CAS  PubMed  Google Scholar 

  • Teufelhofer O, Parzefall W, Kainzbauer E, Ferk F, Freiler C, Knasmüller S, Elbling L, Thurman R, Schulte-Hermann R (2005) Superoxide generation from Kupffer cells contributes to hepatocarcinogenesis: studies on NADPH oxidase knockout mice. Carcinogenesis 26(2):319–329

    Article  CAS  PubMed  Google Scholar 

  • Thakur V, Pritchard MT, McMullen MR, Wang Q, Nagy LE (2006) Chronic ethanol feeding increases activation of NADPH oxidase by lipopolysaccharide in rat Kupffer cells: role of increased reactive oxygen in LPS-stimulated ERK1/2 activation and TNF-alpha production. J Leukoc Biol 79(6):1348–1356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson KJ, Swan RZ, Walling TL, Iannitti DA, McKillop IH, Sindram D (2013) Obesity, but not ethanol, promotes tumor incidence and progression in a mouse model of hepatocellular carcinoma in vivo. Surg Endosc 27(8):2782–2791

    Article  PubMed  Google Scholar 

  • Tsuchishima M, George J, Shiroeda H, Arisawa T, Takegami T, Tsutsumi M (2013) Chronic ingestion of ethanol induces hepatocellular carcinoma in mice without additional hepatic insult. Dig Dis Sci 58(7):1923–1933

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto H, French SW, Reidelberger RD, Largman C (1985) Cyclical pattern of blood alcohol levels during continuous intragastric ethanol infusion in rats. Alcohol Clin Exp Res 9(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Weber E, Bannasch P (1994) Dose and time dependence of the cellular phenotype in rat hepatic preneoplasia and neoplasia induced by single oral exposures to N-nitrosomorpholine. Carcinogenesis 5(6):1219–1226

    Article  Google Scholar 

  • Wheeler MD, Kono H, Yin M, Nakagami M, Uesugi T, Arteel GE, Gäbele E, Rusyn I, Yamashina S, Froh M, Adachi Y, Iimuro Y, Bradford BU, Smutney OM, Connor HD, Mason RP, Goyert SM, Peters JM, Gonzalez FJ, Samulski RJ, Thurman RG (2001) The role of Kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic Biol Med 31(12):1544–1549

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project (“MARCAR”) received funding under European Union Innovative Medicine Initiative (IMI JU) under grant agreement Nr 115001. Funding by a grant from Herzfelder’sche Familienstiftung is gratefully acknowledged. The animal care was thoroughly performed by Dagmar Lehner and Kathi Bernscherer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Grasl-Kraupp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2869 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parzefall, W., Freiler, C., Lorenz, O. et al. Superoxide deficiency attenuates promotion of hepatocarcinogenesis by cytotoxicity in NADPH oxidase knockout mice. Arch Toxicol 89, 1383–1393 (2015). https://doi.org/10.1007/s00204-014-1298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1298-3

Keywords

Navigation