Archives of Toxicology

, Volume 88, Issue 3, pp 543-551

First online:

Dispersed crude oil amplifies germ cell apoptosis in Caenorhabditis elegans, followed a CEP-1-dependent pathway

  • Joseph Ryan PolliAffiliated withDepartment of Biology, East Carolina University
  • , Yanqiong ZhangAffiliated withDepartment of Biology, East Carolina University
  • , Xiaoping PanAffiliated withDepartment of Biology, East Carolina University Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The Deepwater Horizon oil spill is among the most severe environmental disasters in US history. The extent of crude oil released and the subsequent dispersant used for cleanup was unprecedented. The dispersed crude oil represents a unique form of environmental contaminant that warrants investigations of its environmental and human health impacts. Lines of evidence have demonstrated that dispersed oil affects reproduction in various organisms, in a more potent manner than oil- and dispersant-only exposures. However, the action mechanism of dispersed oil remains largely unknown. In this study, we utilized the model organism Caenorhabditis elegans to investigate impacts of dispersed oil exposure on sex cell apoptosis and related gene expressions. Worms were exposed to different diluted levels of crude oil–dispersant (oil–dis) mixtures (20:1, v/v; at 500×, 2,000×, and 5,000× dilutions). The dispersed crude oil significantly increases the number of apoptotic germ cells in treated worms when compared with control at all exposure levels (p < 0.05). Genes involved in the apoptosis pathway were dysregulated, which include ced-13, ced-3, ced-4, ced-9, cep-1, dpl-1, efl-1, efl-2, egl-1, egl-38, lin-35, pax-2, and sir-2.1. Many aberrant expressed genes encoding for core components in apoptosis machinery (cep-1/p53, ced-13/BH3, ced-9/Bcl-2, ced-4/Apaf-1, and ced-3/caspase) displayed consistent expression patterns across all exposure levels. Significantly ced-3/caspase was upregulated at all dispersed oil-treated groups, consistent with the observed apoptosis phenotype. Given cep-1/p53 was activated at all dispersed oil treatments and the germ cell apoptosis was suppressed in the CEP-1 loss of function mutant, the increased apoptosis is likely CEP-1 dependent. In addition, the anti-apoptotic ced-9/Bcl-2 was activated in response to the increase in cell death. This study provides a mechanism understanding of dispersed crude oil-induced reproductive toxicity.


Deepwater Horizon (DWH) oil spill C. elegans Apoptosis Gene expression cep-1 pathway