Skip to main content
Log in

Induction of GST-P-positive proliferative lesions facilitating lipid peroxidation with possible involvement of transferrin receptor up-regulation and ceruloplasmin down-regulation from the early stage of liver tumor promotion in rats

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

To elucidate the role of metal-related molecules in hepatocarcinogenesis, we examined immunolocalization of transferrin receptor (Tfrc), ceruloplasmin (Cp) and metallothionein (MT)-1/2 in relation to liver cell foci positive for glutathione-S-transferase placental form (GST-P) in the early stage of tumor promotion by fenbendazole (FB), phenobarbital, piperonyl butoxide or thioacetamide in a rat two-stage hepatocarcinogenesis model. To estimate the involvement of oxidative stress responses to the promotion, immunolocalization of 4-hydroxy-2-nonenal, malondialdehyde and acrolein was similarly examined. Our findings showed that MT-1/2 immunoreactivity was not associated with the cellular distribution of GST-P and proliferating cell nuclear antigen, suggesting no role of MT-1/2 in hepatocarcinogenesis. We also found enhanced expression of Tfrc after treatment with strong tumor-promoting chemicals. With regard to Cp, the population showing down-regulation was increased in the GST-P-positive foci in relation to tumor promotion. Up-regulation of Tfrc and down-regulation of Cp was maintained in GST-P-positive neoplastic lesions induced after long-term promotion with FB, suggesting the expression changes occurring downstream of the signaling pathway involved in the formation of GST-P-positive lesions. Furthermore, enhanced accumulation of lipid peroxidation end products was observed in the GST-P-positive foci by promotion. Post-initiation treatment with peroxisome proliferator-activated receptor α agonists did not enhance any such distribution changes in GST-P-negative foci. The results thus suggest that facilitation of lipid peroxidation is involved in the induction of GST-P-positive lesions by tumor promotion from an early stage, and up-regulation of Tfrc and down-regulation of Cp may be a signature of enhanced oxidative cellular stress in these lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe M, Usuda K, Hayashi S, Ogawa I, Furukawa S, Igarashi M, Nakae D (2008a) Carcinogenic risk of copper gluconate evaluated by a rat medium-term liver carcinogenicity bioassay protocol. Arch Toxicol 82:563–571

    Article  CAS  PubMed  Google Scholar 

  • Abe M, Suzuki N, Yoshida M, Usuda K, Furukawa S, Juneja LR, Okubo T, Nakae D (2008b) Possible carcinogenic risks of copper gluconate and their prevention by co-administered green tea catechins evaluated by a rat medium-term multi-organ carcinogenicity bioassay protocol. Food Chem Toxicol 46:1760–1770

    Article  CAS  PubMed  Google Scholar 

  • Arredondo M, Núñez MT (2005) Iron and copper metabolism. Mol Aspects Med 26:313–327

    Article  CAS  PubMed  Google Scholar 

  • Bełtowski J, Wójcicka G, Mydlarczyk M, Jamroz A (2002) The effect of peroxisome proliferator-activated receptors α (PPARα) agonist, fenofibrate, on lipid peroxidation, total antioxidant capacity, and plasma paraoxonase 1 (PON 1) activity. J Physiol Pharmacol 53:463–475

    PubMed  Google Scholar 

  • Cairo G, Tacchini L, Recalcati S, Azzimonti B, Minotti G, Bernelli-Zazzera A (1998) Effect of reactive oxygen species on iron regulatory protein activity. Ann NY Acad Sci 851:179–186

    Article  CAS  PubMed  Google Scholar 

  • Cairo G, Conte D, Bianchi L, Fraquelli M, Recalcati S (2001) Reduced serum ceruloplasmin levels in hereditary haemochromatosis. Br J Haematol 114:226–229

    Article  CAS  PubMed  Google Scholar 

  • Carthew P, Nolan BM, Smith AG, Edwards RE (1997) Iron promotes DEN initiated GST-P foci in rat liver. Carcinogenesis 18:599–603

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty T, Chatterjee A, Rana A, Srivastawa S, Damodaran S, Chatterjee M (2007) Cell proliferation and hepatocarcinogenesis in rat initiated by diethylnitrosamine and promoted by phenobarbital: potential roles of early DNA damage and liver metallothionein expression. Life Sci 80:489–499

    Article  Google Scholar 

  • Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY (1992) Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci USA 89:10405–10409

    Article  CAS  PubMed  Google Scholar 

  • Daniels TR, Delgado T, Helguera G, Penichet ML (2006) The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 121:159–176

    Article  CAS  PubMed  Google Scholar 

  • Dewa Y, Nishimura J, Muguruma M et al (2008) β-Naphthoflavone enhances oxidative stress responses and the induction of preneoplastic lesions in a diethylnitrosamine-initiated hepatocarcinogenesis model in partially hepatectomized rats. Toxicology 244:179–189

    Article  CAS  PubMed  Google Scholar 

  • Dewa Y, Nishimura J, Muguruma M et al (2009) Involvement of oxidative stress in hepatocellular tumor-promoting activity of oxfendazole in rats. Arch Toxicol 83:503–511

    Article  CAS  PubMed  Google Scholar 

  • Fukuda A, Nakamura Y, Ohigashi H, Osawa T, Uchida K (1997) Cellular response to the redox active lipid peroxidation products: induction of glutathione S-transferase P by 4-hydroxy-2-nonenal. Biochem Biophys Res Commun 236:505–509

    Article  CAS  PubMed  Google Scholar 

  • Ghoshal K, Majumder S, Li Z, Dong X, Jacob ST (2000) Suppression of metallothionein gene expression in a rat hepatoma because of promoter-specific DNA methylation. J Biol Chem 275:539–547

    Article  CAS  PubMed  Google Scholar 

  • Harano Y, Yasui K, Toyama T et al (2006) Fenofibrate, a peroxisome proliferator-activated receptor α agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver. Liver Int 26:613–620

    Article  CAS  PubMed  Google Scholar 

  • Henrique R, Jerónimo C, Hoque MO et al (2005) MT1G hypermethylation is associated with higher tumor stage in prostate cancer. Cancer Epidemiol Biomarkers Prev 14:1274–1278

    Article  CAS  PubMed  Google Scholar 

  • Huang X (2003) Iron overload its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res 533:153–171

    CAS  PubMed  Google Scholar 

  • Ito N, Imaida K, Asamoto M, Shirai T (2000) Early detection of carcinogenic substances and modifiers in rats. Mutat Res 462:209–217

    Article  CAS  PubMed  Google Scholar 

  • Kew MC (2008) Hepatic iron overload and hepatocellular carcinoma. Cancer Lett 286:38–43

    Article  PubMed  Google Scholar 

  • Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J, Stevenson DE, Walborg EF Jr (1998) The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 106:289–295

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Terao K, Akao M (1987) Inhibitory effect of fumaric acid on hepatocarcinogenesis by thioacetamide in rats. J Natl Cancer Inst 79:1047–1051

    CAS  PubMed  Google Scholar 

  • Lutsenko S (2008) Atp7b-/- mice as a model for studies of Wilson’s disease. Biochem Soc Trans 36:1233–1238

    Article  CAS  PubMed  Google Scholar 

  • Messner DJ, Kowdley KV (2008) Neoplastic transformation of rat liver epithelial cells is enhanced by non-transferrin-bound iron. BMC Gastroenterol 8:2

    Article  PubMed  Google Scholar 

  • Muguruma M, Unami A, Kanki M et al (2007) Possible involvement of oxidative stress in piperonyl butoxide induced hepatocarcinogenesis in rats. Toxicology 236:61–75

    Article  CAS  PubMed  Google Scholar 

  • Okada S (1996) Iron-induced tissue damage and cancer: the role of reactive oxygen species-free radicals. Pathol Int 46:311–332

    Article  CAS  PubMed  Google Scholar 

  • Qi C, Zhu Y, Reddy JK (2000) Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys 32:187–204

    Article  CAS  PubMed  Google Scholar 

  • Rogers LK, Gupta S, Welty SE, Hansen TN, Smith CV (2002) Nuclear and nucleolar glutathione reductase, peroxidase, and transferase activities in livers of male and female Fischer-344 rats. Toxicol Sci 69:279–285

    Article  CAS  PubMed  Google Scholar 

  • Sano M, Hagiwara A, Tamano S, Hasegawa R, Imaida K, Ito N, Shirai T (1999) Dose-dependent induction of carcinomas and glutathione S-transferase placental form negative eosinophilic foci in the rat liver by di(2-ethylhexyl)phthalate after diethylnitrosamine initiation. J Toxicol Sci 24:177–186

    CAS  PubMed  Google Scholar 

  • Satoh K, Hayakari M, Ookawa K et al (2001) Lipid peroxidation end products-responded induction of a preneoplastic marker enzyme glutathione S-transferase P-form (GST-P) in rat liver on administration via the portal vein. Mutat Res 483:65–72

    CAS  PubMed  Google Scholar 

  • Schosinsky KH, Lehmann HP, Beeler MF (1974) Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clin Chem 20:1556–1563

    CAS  PubMed  Google Scholar 

  • Schümann K, Classen HG, Dieter HH et al (2002) Hohenheim consensus workshop: copper. Eur J Clin Nutr 56:469–483

    Article  PubMed  Google Scholar 

  • Seo KW, Kim KB, Kim YJ, Choi JY, Lee KT, Choi KS (2004) Comparison of oxidative stress and changes of xenobiotic metabolizing enzymes induced by phthalates in rats. Food Chem Toxicol 42:107–114

    Article  CAS  PubMed  Google Scholar 

  • Shima T, Nishimura J, Dewa Y et al (2009) Modification of dietary copper levels on the early stage of tumor-promotion with propylthiouracil in a rat two-stage thyroid carcinogenesis model. Chem Biol Interact 180:262–270

    Article  CAS  PubMed  Google Scholar 

  • Shirai T (1997) A medium-term rat liver bioassay as a rapid in vivo test for carcinogenic potential, a historical review of model development and summary of results from 291 tests. Toxicol Pathol 25:453–460

    Article  CAS  PubMed  Google Scholar 

  • Shoda T, Onodera H, Takeda M et al (1999) Liver tumor promoting effects of fenbendazole in rats. Toxicol Pathol 27:553–562

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan M, Sudheer AR, Pillai KR, Kumar PR, Sudhakaran PR, Menon VP (2006) Influence of ferulic acid on γ-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes. Toxicology 228:249–258

    Article  CAS  PubMed  Google Scholar 

  • Sukata T, Uwagawa S, Ozaki K et al (2004) α2-Macroglobulin: a novel cytochemical marker characterizing preneoplastic and neoplastic rat liver lesions negative for hitherto established cytochemical markers. Am J Pathol 165:1479–1488

    CAS  PubMed  Google Scholar 

  • Sun F, Hayami S, Ogiri Y, Haruna S, Tanaka K, Yamada Y, Tokumaru S, Kojo S (2000) Evaluation of oxidative stress based on lipid hydroperoxide, vitamin C and vitamin E during apoptosis and necrosis caused by thioacetamide in rat liver. Biochim Biophys Acta 1500:181–185

    CAS  PubMed  Google Scholar 

  • Takahashi M, Shibutani M, Woo GH et al (2008) Cellular distributions of molecules with altered expression specific to the tumor promotion process from the early stage in a rat two-stage hepatocarcinogenesis model. Carcinogenesis 29:2218–2226

    Article  CAS  PubMed  Google Scholar 

  • Tapryal N, Mukhopadhyay C, Das D, Fox PL, Mukhopadhyay CK (2009) Reactive oxygen species regulate ceruloplasmin by a novel mRNA decay mechanism involving its 3′-untranslated region: implications in neurodegenerative diseases. J Biol Chem 284:1873–1883

    Article  CAS  PubMed  Google Scholar 

  • Tatematsu M, Mera Y, Ito N, Satoh K, Sato K (1985) Relative merits of immunohistochemical demonstrations of placental, A, B and C forms of glutathione S-transferase and histochemical demonstration of γ-glutamyl transferase as markers of altered foci during liver carcinogenesis in rats. Carcinogenesis 6:1621–1626

    Article  CAS  PubMed  Google Scholar 

  • Toyokuni S (1996) Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 20:553–566

    Article  CAS  PubMed  Google Scholar 

  • Vasák M (2005) Advances in metallothionein structure and functions. J Trace Elem Med Biol 19:13–17

    Article  PubMed  Google Scholar 

  • Woo GH, Takahashi M, Inoue K et al (2009) Cellular distributions of molecules with altered expression specific to thyroid proliferative lesions developing in a rat thyroid carcinogenesis model. Cancer Sci 100:617–625

    Article  CAS  PubMed  Google Scholar 

  • Yasuno H, Nishimura J, Dewa Y, Muguruma M, Takabatake M, Murata Y, Shibutani M, Mitsumori K (2008) Modifying effect of Siraitia grosvenori extract on piperonyl butoxide-promoted hepatocarcinogenesis in rats. J Toxicol Sci 33:197–207

    Article  CAS  PubMed  Google Scholar 

  • Yeldandi AV, Rao MS, Reddy JK (2000) Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat Res 448:159–177

    CAS  PubMed  Google Scholar 

  • Zainal TA, Weindruch R, Szweda LI, Oberley TD (1999) Localization of 4-hydroxy-2-nonenal-modified proteins in kidney following iron overload. Free Radic Biol Med 26:1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Zowczak M, Iskra M, Paszkowski J, Mańczak M, Torliński L, Wysocka E (2001) Oxidase activity of ceruloplasmin and concentrations of copper and zinc in serum of cancer patients. J Trace Elem Med Biol 15:193–196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Health and Labour Sciences Research Grants (Research on Food Safety) from the Ministry of Health, Labour and Welfare of Japan. All authors disclose that there are no conflicts of interest that could inappropriately influence the outcome of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Shibutani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizukami, S., Ichimura, R., Kemmochi, S. et al. Induction of GST-P-positive proliferative lesions facilitating lipid peroxidation with possible involvement of transferrin receptor up-regulation and ceruloplasmin down-regulation from the early stage of liver tumor promotion in rats. Arch Toxicol 84, 319–331 (2010). https://doi.org/10.1007/s00204-009-0496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-009-0496-x

Keywords

Navigation