Skip to main content
Log in

Different nitrogen sources change the transcriptome of welan gum-producing strain Sphingomonas sp. ATCC 31555

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

To reveal effects of different nitrogen sources on the expressions and functions of genes in Sphingomonas sp. ATCC 31555, it was cultivated in medium containing inorganic nitrogen (IN), organic nitrogen (ON), or inorganic–organic combined nitrogen (CN). Welan gum production and bacterial biomass were determined, and RNA sequencing (RNA-seq) was performed. Differentially expressed genes (DEGs) between the different ATCC 31555 groups were identified, and their functions were analyzed. Welan gum production and bacterial biomass were significantly higher in the ON and CN groups compared with those in the IN group. RNA-seq produced 660 unigenes, among which 488, 731, and 844 DEGs were identified between the IN vs. ON, IN vs. CN, and ON vs. CN groups, respectively. All the DEGs were related significantly to metabolic process and signal transduction. DEGs between the IN vs. CN and ON vs. CN groups were potentially associated with bacterial chemotaxis. Real-time PCR confirmed the expressions of selected DEGs. Organic nitrogen led to higher bacterial biomass and welan gum production than inorganic nitrogen, which might reflect differences in gene expression associated with metabolic process, signal transduction, and bacterial chemotaxis induced by different nitrogen sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Ashtaputre AA, Shah AK (1995) Studies on the exopolysaccharide from Sphingomonas paucimobilis-GS1: nutritional requirements and precursor-forming enzymes. Curr Microbiol 31:234–238

    Article  CAS  Google Scholar 

  • Bajaj IB, Saudagar PS, Singhal RS, Pandey A (2006) Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461. J Biosci Bioeng 102:150–156

    Article  CAS  PubMed  Google Scholar 

  • Baker MD, Wolanin PM, Stock JB (2006) Signal transduction in bacterial chemotaxis. Bioessays 28:9–22

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300

    Google Scholar 

  • Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. Bmj 310:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman RJ, Patel YN, Harding NE (2008) Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. J Ind Microbiol Biotechnol 35:263–274

    Article  CAS  PubMed  Google Scholar 

  • Costa E, Teixido N, Usall J, Atares E, Vinas I (2002) The effect of nitrogen and carbon sources on growth of the biocontrol agent Pantoea agglomerans strain CPA-2. Lett Appl Microbiol 35:117–120

    Article  CAS  PubMed  Google Scholar 

  • Craven R, Montie TC (1985) Regulation of Pseudomonas aeruginosa chemotaxis by the nitrogen source. J Bacteriol 164:544–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz S et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagiwara A et al (2010) Ninety-day oral toxicity study of rhamsan gum, a natural food thickener produced from Sphingomonas ATCC 31961, in Crl: CD (SD) IGS rats. J Toxicol Sci 35:493–501

    Article  CAS  PubMed  Google Scholar 

  • Jansson PE, Widmalm G (1994) Welan Gum (S-130) Contains repeating units with randomly distributed l-mannosyl and l-rhamnosyl terminal groups, as determined by Fabms. Carbohydr Res 256:327–330 doi:10.1016/0008-6215(94)84217-5

    Article  CAS  PubMed  Google Scholar 

  • Jia W, Zhang J-S, Jiang Y, Zheng Z-Y, Zhan X-B, Lin C-C (2012) Structure of oligosaccharide F21 derived from exopolysaccharide WL-26 produced by Sphingomonas sp. ATCC 31555. Carbohydrate polymers 90:60–66

    Article  CAS  PubMed  Google Scholar 

  • Kaur V, Bera MB, Panesar PS, Kumar H, Kennedy J (2014) Welan gum: microbial production, characterization, and applications. Int J Biol Macromol 65:454–461

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007. doi:10.1093/molbev/msh073

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xu H, Xu H, Li S, Ouyang P-K (2010) Biosynthetic pathway of sugar nucleotides essential for welan gum production in Alcaligenes sp. CGMCC2428. Appl Microbiol Biotechnol 86:295–303

    Article  CAS  PubMed  Google Scholar 

  • Li H XH, Li S, Feng XH, Quyang PK (2012) Optimization of exopolysaccharide welan gum production by Alcaligenes sp CGMCC2428 with tween-40 using response surface methodology. Carbohydr Polym 87:1363–1368

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    Article  PubMed  PubMed Central  Google Scholar 

  • Sá-Correia I, Fialho A, Videira P, Moreira L, Marques A, Albano H (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Ind Microbiol Biotechnol 29:170–176

    Article  PubMed  Google Scholar 

  • Sourjik V, Wingreen NS (2012) Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol 24:262–268

    Article  CAS  PubMed  Google Scholar 

  • Sreerag RS JJ, Nisha GV, Asha A, Sasidharan Nishanth Kumar (2014) Influence of six nitrogen sources with fructose on antimicrobial metabolite production by bacterium associated with entomopathogenic nematode. Int J Pharm Pharm Sci 6:299–304

    Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  • Wang X, Tao F, Gai Z, Tang H, Xu P (2012a) Genome sequence of the welan gum-producing strain Sphingomonas sp. ATCC 31555. J Bacteriol 194:5989–5990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Tao F, Gai Z, Tang H, Xu P (2012b) Genome sequence of the welan gum-producing strain Sphingomonas sp. ATCC 31555. J Bacteriol 194:5989–5990. doi:10.1128/JB.01486-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler PA, Kirchman DL (1986) Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol Oceanogr 31:998–1009

    Article  CAS  Google Scholar 

  • White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7:301–306

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Dong S, Li S, Xu X, Xu H (2014) Improvement of welan gum biosynthesis and transcriptional analysis of the genes responding to enhanced oxygen transfer by oxygen vectors in Sphingomonas sp. Biochem Eng J 90:264–271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Special fund for medical service of Jilin finance department (SCZSY201507); the National Science and Technology Supporting Plan (2011BAD23B04); the National High Technology Research and Development Program (2012AA021505); and the Science and Technology Supporting Plan of Wuxi (CLE01N1208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobei Zhan.

Ethics declarations

Conflict of interest

All authors declare that there are no competing interests associated with this study.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Nie, Z., Zheng, Z. et al. Different nitrogen sources change the transcriptome of welan gum-producing strain Sphingomonas sp. ATCC 31555. Arch Microbiol 199, 1055–1064 (2017). https://doi.org/10.1007/s00203-017-1372-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1372-3

Keywords

Navigation