Skip to main content
Log in

Lysobacter species: a potential source of novel antibiotics

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Infectious diseases threaten global health due to the ability of microbes to acquire resistance against clinically used antibiotics. Continuous discovery of antibiotics with a novel mode of action is thus required. Actinomycetes and fungi are currently the major sources of antibiotics, but the decreasing rate of discovery of novel antibiotics suggests that the focus should be changed to previously untapped groups of microbes. Lysobacter species have a genome size of ~6 Mb with a relatively high G + C content of 61–70 % and are characterized by their ability to produce peptides that damage the cell walls or membranes of other microbes. Genome sequence analysis revealed that each Lysobacter species has gene clusters for the production of 12–16 secondary metabolites, most of which are peptides, thus making them ‘peptide production specialists’. Given that the number of antibiotics isolated is much lower than the number of gene clusters harbored, further intensive studies of Lysobacter are likely to unearth novel antibiotics with profound biomedical applications. In this review, we summarize the structural diversity, activity and biosynthesis of lysobacterial antibiotics and highlight the importance of Lysobacter species for antibiotic production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Olson AS, Su W, Dussault PH, Du L (2015) Fatty acyl incorporation in the biosynthesis of WAP-8294A, a group of potent anti-MRSA cyclic lipodepsipeptides. RSC Adv 5:105753–105759

    Article  CAS  PubMed  Google Scholar 

  • Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Evol Microbiol 28:367–393

    Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147

    Article  PubMed  PubMed Central  Google Scholar 

  • de Bruijn I et al (2015) Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genom 16:1–16

    Article  Google Scholar 

  • Demirev AV, Lee C-H, Jaishy BP, Nam D-H, Ryu DDY (2006) Substrate specificity of nonribosomal peptide synthetase modules responsible for the biosynthesis of the oligopeptide moiety of cephabacin in Lysobacter lactamgenus. FEMS Microbiol Lett 255:121–128

    Article  CAS  PubMed  Google Scholar 

  • Ding Y et al (2016a) Alteramide B is a microtubule antagonist of inhibiting Candida albicans. Biochim Biophys Acta 1860:2097–2106

    Article  CAS  PubMed  Google Scholar 

  • Ding Y et al (2016b) HSAF-induced antifungal effects in Candida albicans through ROS-mediated apoptosis. RSC Adv 6:30895–30904

    Article  CAS  PubMed  Google Scholar 

  • Graupner PR et al (1997) Dihydromaltophilin; a novel fungicidal tetramic acid containing metabolite from Streptomyces sp. J Antibiot 50:1014–1019

    Article  PubMed  Google Scholar 

  • Hamamoto H et al (2015) Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol 11:127–133

    Article  CAS  PubMed  Google Scholar 

  • Harada S, Tsubotani S, Ono H, Okazaki H (1984) Cephabacins, new cephem antibiotics of bacterial origin. II. Isolation and characterization. J Antibiot 37:1536–1545

    Article  CAS  PubMed  Google Scholar 

  • Harada S, Tsubotani S, Hida T, Ono H, Okazaki H (1986) Structure of lactivicin, an antibiotic having a new nucleus and similar biological activities to β-lactam antibiotics. Tetrahedron Lett 27:6229–6232

    Article  CAS  Google Scholar 

  • Hashizume H, Igarashi M, Hattori S, Hori M, Hamada M, Takeuchi T (2001) Tripropeptins, novel antimicrobial agents produced by Lysobacter sp. I. Taxonomy, isolation and biological activities. J Antibiot 54:1054–1059

    Article  CAS  PubMed  Google Scholar 

  • Hashizume H, Hattori S, Igarashi M, Akamatsu Y (2004) Tripropeptin E, a new tripropeptin group antibiotic produced by Lysobacter sp. BMK333-48F3. J Antibiot 57:394–399

    Article  CAS  PubMed  Google Scholar 

  • Hashizume H, Igarashi M, Sawa R, Adachi H, Nishimura Y, Akamatsu Y (2008) A new type of tripropeptin with anteiso-branched chain fatty acid from Lysobacter sp. BMK333-48F3. J Antibiot 61:577–582

    Article  CAS  PubMed  Google Scholar 

  • Hashizume H et al (2011) Tripropeptin C blocks the lipid cycle of cell wall biosynthesis by complex formation with undecaprenyl pyrophosphate. Antimicrob Agents Chemother 55:3821–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashizume H, Takahashi Y, Harada S, Nomoto A (2015) Natural lipopeptide antibiotic tripropeptin C revitalizes and synergistically potentiates the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. J Antibiot 68:373–378

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Robbel L, Marahiel Mohamed A (2011) Identification and characterization of the lysobactin biosynthetic gene cluster reveals mechanistic insights into an unusual termination module architecture. Chem Biol 18:655–664

    Article  CAS  PubMed  Google Scholar 

  • Kato A et al (1998) A new anti-MRSA antibiotic complex, WAP-8294A. I. Taxonomy, isolation and biological activities. J Antibiot 51:929–935

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 107:2646–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korp J, Gurovic MSV, Nett M (2016) Antibiotics from predatory bacteria. Beilstein J Org Chem 12:594–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laureti L et al (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci USA 108:6258–6263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee W et al (2016) The mechanism of action of lysobactin. J Am Chem Soc 138:100–103

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2014) Iterative assembly of two separate polyketide chains by the same single-module bacterial polyketide synthase in the biosynthesis of HSAF. Angew Chem Int Ed 53:7524–7530

    Article  CAS  Google Scholar 

  • Lou L et al (2011) Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes. J Am Chem Soc 133:643–645

    Article  CAS  PubMed  Google Scholar 

  • Lucas X et al (2013) StreptomeDB: a resource for natural compounds isolated from Streptomyces species. Nucleic Acids Res 41:D1130–D1136

    Article  CAS  PubMed  Google Scholar 

  • Medema MH et al (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers E et al (1985) Catacandins, novel anticandidal antibiotics of bacterial origin. J Antibiot 38:1642–1648

    Article  CAS  PubMed  Google Scholar 

  • Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki Y et al (1984) Cephabacins, new cephem antibiotics of bacterial origin. IV. Antibacterial activities, stability to beta-lactamases and mode of action. J Antibiot 37:1555–1565

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan J, McCullough JE, Tymiak AA, Kirsch DR, Trejo WH, Principe PA (1988) Lysobactin, a novel antibacterial agent produced by Lysobacter sp. I. Taxonomy, isolation and partial characterization. J Antibiot 41:1740–1744

    Article  PubMed  Google Scholar 

  • Panthee S et al (2011) Furaquinocins I and J: novel polyketide isoprenoid hybrid compounds from Streptomyces reveromyceticus SN-593. J Antibiot 64:509–513

    Article  CAS  PubMed  Google Scholar 

  • Panthee S, Hamamoto H, Suzuki Y, Sekimizu K (2016) In silico identification of lysocin biosynthetic gene cluster from Lysobacter sp. RH2180-5. J Antibiot. doi:10.1038/ja.2016.102

  • Paudel A, Hamamoto H, Panthee S, Sekimizu K (2016) Menaquinone as a potential target of antibacterial agents. Drug Discov Ther 10:123–128

    Article  PubMed  Google Scholar 

  • Seccareccia I, Kost C, Nett M (2015) Quantitative analysis of Lysobacter predation. Appl Environ Microbiol 81:7098–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoji J et al (1988) Isolation and characterization of katanosins A and B. J Antibiot 41:713–718

    Article  CAS  PubMed  Google Scholar 

  • von Nussbaum F et al (2007) Structure and total synthesis of lysobactin (katanosin B). Angew Chem Int Ed 46:2039–2042

    Article  Google Scholar 

  • Waksman SA (1945) Microbial antagonisms and antibiotic substances. The Commonwealth Fund, New York

    Book  Google Scholar 

  • Wang Y, Qian G, Liu F, Li Y-Z, Shen Y, Du L (2013) Facile method for site-specific gene integration in Lysobacter enzymogenes for yield improvement of the anti-MRSA antibiotics WAP-8294A and the antifungal antibiotic HSAF. ACS Synth Biol 2:670–678

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2014) Transcriptomic analysis reveals new regulatory roles of Clp signaling in secondary metabolite biosynthesis and surface motility in Lysobacter enzymogenes OH11. Appl Microbiol Biotechnol 98:9009–9020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2014) Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva, Switzerland

  • Xie Y, Wright S, Shen Y, Du L (2012) Bioactive natural products from Lysobacter. Nat Prod Rep 29:1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Zhao Y, Du L, Qian G, Liu F (2015a) Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in Lysobacter enzymogenes OH11. Microb Biotechnol 8:499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Wu P, Wright SJ, Du L, Wei X (2015b) Bioactive polycyclic tetramate macrolactams from Lysobacter enzymogenes and their absolute configurations by theoretical ECD calculations. J Nat Prod 78:1841–1847

    Article  CAS  PubMed  Google Scholar 

  • Yu F et al (2007) Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 51:64–72

    Article  CAS  PubMed  Google Scholar 

  • Zhang W et al (2011) Identification and characterization of the anti-methicillin-resistant Staphylococcus aureus WAP-8294A2 biosynthetic gene cluster from Lysobacter enzymogenes OH11. Antimicrob Agents Chemother 55:5581–5589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Lysocin research in our laboratory was supported by MEXT KAKENHI (JP221S0002), Grant-in-Aid for Scientific Research on Innovative Areas (JP26102714) and a Grant-in-Aid for young scientists (A) (JP24689008) to HH; and in part by Grant-in-Aid for scientific research (S) (JP15H05783) and Drug Discovery Support Promotion Project from Japan Agency for Medical Research and Development, AMED, to K.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhisa Sekimizu.

Additional information

Communicated by Markus Nett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panthee, S., Hamamoto, H., Paudel, A. et al. Lysobacter species: a potential source of novel antibiotics. Arch Microbiol 198, 839–845 (2016). https://doi.org/10.1007/s00203-016-1278-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1278-5

Keywords

Navigation