Skip to main content
Log in

Description of Hydrogenophaga laconesensis sp. nov. isolated from tube well water

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A light cream color colony was isolated, using oligotrophic LB agar medium, from a water sample collected from a tube well and designated as HWB-10T. Cells of strain HWB-10T were Gram-negative, motile rods, non-spore forming, positive for catalase, oxidase, nitrate reduction and esculin. The predominant fatty acids were C16:0, summed feature 4 (C16:1 ω7c/iso-C15:0 2-OH) and summed feature 7 (C18:1 ω7c, C18:1 ω9t and/or C18:1 ω12t), and the major ubiquinone was Q-8. NCBI-BLAST- and EzTaxon-based 16S rRNA gene sequence similarity search identified strain HWB-10T as a member of the genus Hydrogenophaga and H. atypica DSM 15342T, H. defulvi DSM 15341T, H. palleronii LMG2366T and H. taeniospiralis LMG7170T being the nearest phylogenetic species with a similarity (%) of 99.3, 99.1, 98.4 and 98.2, respectively, while the similarity was <98.0 % with other species of the genus. However, DNA–DNA similarities between HWB-10T and H. atypica DSM 15342T and H. defulvi DSM 15341T were 37.0 and 43.0 %, respectively, indicating that strain HWB-10T is a novel species. Further, the DNA fingerprinting, based on BOX-, ERIC-, (GTG)5- and REP-PCR amplifications, distinguished strain HWB-10T from its closest species, H. atypica DSM 15342T and H. defulvi DSM 15341T with similarity coefficients of 0.45 and 0.37, respectively, a value sufficient to establish the species status within the genus Hydrogenophaga. In addition, strain HWB-10T exhibited several phenotypic differences with its closely related species. Based on the above cumulative differentiating characteristics, strain HWB-10T was identified as a new species of the genus Hydrogenophaga and proposed as Hydrogenophaga laconesensis sp. nov. with strain HWB-10T (KTCC 42478T = LMG 28681T) as its type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Bertani G (1952) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    Google Scholar 

  • Bhandarkar S (2013) Vehicular pollution, their effect on human health and mitigation measures. Veh Eng 1:33–40

    Google Scholar 

  • Bhoopathi V, Kuntamalla S, Madhusudhan N, Narsimha A, Rajeshwara Reddy B (2014) Water quality assessment of Nacharam area, Ranga reddy district, Andhra Pradesh. Global J Biol, Agr and health Sci 3:220–225

    Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738

    Article  CAS  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  • Chung BS, Ryu SH, Park M, Jeon Y, Chung YR, Jeon CO (2007) Hydrogenophaga caeni sp. nov. isolated from activated sludge. Int J Syst Evol Microbiol 57:1126–1130

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contzen M, Moore ER, Blümel S, Stolz A, Kämpfer P (2000) Hydrogenophaga intermedia sp. nov., a 4-aminobenzenesulfonate degrading organism. Syst Appl Microbiol 23:487–493

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh KK (2013) Impact of human activities on the quality of groundwater from Sangamner Area, Ahmednagar District, Maharashtra, India. Int Res J Environ Sci 2:66–74

    Google Scholar 

  • Du J, Yang JE, Singh H, Akter S, Won K, Yin CS, Jin FX, Yi TH (2015) Hydrogenophaga luteola sp. nov. isolated from reed pond water. Antonie Van Leeuwenhoek 108:695–701

    Article  CAS  PubMed  Google Scholar 

  • Halebian S, Harris B, Finegold SM, Rolfei RD (1981) Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 13:444–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harwood CR, Cutting SM (1990) Chemically defined growth media and supplements. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, Chichester, p 548

    Google Scholar 

  • Inan K, Bektas Y, Canakci S, Belduz AO (2011) Use of rpoB sequences and rep-PCR for phylogenetic study if Anoxybacillus species. J Microbiol 49:782–790

    Article  PubMed  Google Scholar 

  • Kämpfer P, Schulze R, Jäckel U, Malik KA, Amann R, Spring S (2005) Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 55:341–344

    Article  PubMed  Google Scholar 

  • Kim YJ, Kim MK, Weon HY, Kim HB, Yang DC (2010) Hydrogenophaga temperata sp. nov., a betaproteobacterium isolated from compost in Korea. J Gen Appl Microbiol 56:419–425

    Article  CAS  PubMed  Google Scholar 

  • Kimura Z, Okabe S (2013) Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell. J Gen Appl Microbiol 59:261–266

    Article  CAS  PubMed  Google Scholar 

  • Knutsson G (1994) Acidification effects on groundwater—prognosis of the risks for the future ground water resources at risk. In: Proceedings of the Helsinki conference, IAHS Publ. No. 222

  • Kortatsi BK (2003) Acidification of groundwater and its implications on rural water supply in the Ankobra basin, Ghana. West Afr J Appl Ecol 4:35–47

    Google Scholar 

  • Lane DJ (1991) 16S–23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 15–147

    Google Scholar 

  • Lee DR (1976) The role of groundwater in eutrophication of a lake in glacial outwash terrain. Int J Speleol 8:117–126

    Article  Google Scholar 

  • Marques ASA, Marchaison A, Gardan L, Samson R (2008) BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringaeP. viridiflava group. Genet Mol Biol 31:106–115

    CAS  Google Scholar 

  • Masco L, Huys G, Gevers D, Verbrugghen L, Swings J (2003) Identification of Bifidobacterium species using rep-PCR fingerprinting system. Appl Microbiol 26:557–563

    Article  CAS  Google Scholar 

  • Naik JK, Smitha S, Pawar C, Siva JadhavN, Narayana DV, Pawar AC (2007) Soil and sediment contamination by trace elements at Boduppal cheru, Hyderabad, A.P., India. Ecol Environ Conserv Pap 13:109–111

    Google Scholar 

  • Nayak BS, Badgley B, Harwood VJ (2011) Comparison of genotypic and phylogenetic relationships of environmental Enterococcus isolates by BOX-PCR typing and 16S rRNA gene sequencing. Appl Environ Microbiol 77:5050–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavel AB, Vasile CI (2012) PyElph—a software tool for gel images analysis and phylogenetics. BMC Bioinform 13:9–14

    Article  Google Scholar 

  • Pieterse NM, Olde Venterink H, Schot PP, VerkroostIs AWM (2005) Nutrient contamination of groundwater causing eutrophication of groundwater-fed meadows? Landsc Ecol 20:743–753

    Article  Google Scholar 

  • Rasschaert G, Houf K, Imberechts H, Grijspeerdt K, De Zutter L, Heyndrickx M (2005) Comparison of five repetitive-sequence based PCR typing methods for molecular discrimination of Salmonella enterica isolates. J Clin Microbiol 43:3615–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy GSN, Agarwal RK, Matsumoto GI, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in Mc Murdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Garcia-Pichel F (2015) Description of Pseudomonas asuensis sp. nov. from biological soil crusts in the Colorado plateau, United States of America. J Microbiol 53:6–13

    Article  CAS  PubMed  Google Scholar 

  • Reinauer KM, Popovic J, Weber CD, Millerick KA, Kwon MJ, Wei N, Finneran KT (2014) Hydrogenophaga carboriunda sp. nov., a tertiary butyl alcohol-oxidizing, psychrotolerant aerobe derived from granular-activated carbon (GAC). Curr Microbiol 68:510–517

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system. Version 2.2. Exeter Software. Setauket, New York

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note No. 101. MIDI, Newark

  • Shivaji S, Reddy GSN (2014) Phylogenetic analyses of the genus Glaciecola and description of Paraglaciecola oceanifecundans gen. nov. sp. nov., isolated from Southern Ocean, Antarctica and transfer of Glaciecola mesophila, G. agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. polaris and G. psychrophila to the genus Paraglaciecola as Paraglaciecola mesophila comb. nov., P. agarilytica comb. nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P. polaris comb. nov. and P. psychrophila comb. nov. Int J Syst Evol Microbiol 64:3264–3275

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Reddy GSN, Sundreswaran VR, Celia T (2015) Description of Thalassospira lohafexi sp. nov., isolated from Southern Ocean, Antarctica. Arch Microbiol 197:627–637

    Article  CAS  PubMed  Google Scholar 

  • Smolders AJP, Lucassen ECHET, Bobbink R, Roelofs JGM, Lamers LPM (2010) How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry 98:1–7

    Article  CAS  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tindall B, Sikorski J, Smibert R, Krieg N (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (eds) Methods for general and molecular microbiology, 3rd edn. ASM Press, Washington, DC, pp 330–393

    Google Scholar 

  • Udayalaxmi G, Himabindu D, Ramadass G (2010) Geochemical evaluation of groundwater quality in selected areas of Hyderabad, A.P., India. Indian J Sci Technol 3:546–553

    CAS  Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genome fingerprinting of bacteria using repetitive sequence based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550

    Article  CAS  PubMed  Google Scholar 

  • Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen B et al (1989) Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Evol Microbiol 39:319–333

    CAS  Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Kang SJ, Ryu SH, Jeon CO, Oh TK (2008) Hydrogenophaga bisanensis sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 58:393–397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Council for Scientific and Industrial Research (CSIR), India, for funding INDIA’s IDEA (PSC0108) project. Our special thanks to Prof. Peter Kämpfer for kindly providing the types strains of species Hydrogenophaga defluvii (DSM 15341) and Hydrogenophaga atypica (DSM 15342). Our thanks to Dr. SWA Naqvi, Director, CSIR-NIO, for coordinating the activities of the INDIA’s IDEA project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathyanarayana Reddy Gundlapally.

Additional information

Communicated by Erko Stackebrandt.

GenBank/EMBL accession number for the 16S rRNA gene sequence of Hydrogenophaga laconesensis sp. nov. (HWB-10T) is KT756664.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantri, S., Chinthalagiri, M.R. & Gundlapally, S.R. Description of Hydrogenophaga laconesensis sp. nov. isolated from tube well water. Arch Microbiol 198, 637–644 (2016). https://doi.org/10.1007/s00203-016-1224-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1224-6

Keywords

Navigation