Skip to main content
Log in

Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

This study describes a new effort toward understanding the interaction mechanisms between antibiotic-resistant Salmonella Typhimurium and phages. The antibiotic susceptibility, β-lactamase activity, bacterial motility, gene expression, and lytic activity were evaluated in ciprofloxacin-induced antibiotic-sensitive Salmonella Typhimurium (ASSTCIP) and ciprofloxacin-induced antibiotic-resistant S. Typhimurium (ARSTCIP), which were compared to the wild-type strains (ASSTWT and ARSTWT). The MIC values of ampicillin, norfloxacin, chloramphenicol, and tetracycline were significantly increased to > 512, 16, 16, and 256 μg/ml, respectively, in the ARSTCIP. The lowest and highest extracellular lactamase activities were observed in ASSTWT (6.85 μmol/min/ml) and ARSTCIP (48.83 μmol/min/ml), respectively. The acrA, lpfE, and hilA genes were significantly upregulated by more than tenfold in both ASSTCIP and ARSTCIP. The induction of multiple antibiotic resistance resulted from the increased efflux pump activity (AcrAB-TolC). The highest phage adsorption rates were more than 95 % for ASSTWT, ASSTCIP, and ARSTWT, while the lowest adsorption rate was 52 % for ARSTCIP at 15 min of infection. The least lytic activity of phage was 20 % against the ARSTCIP, followed by ASSTCIP (30 %). The adsorption rate of phage against ARSTCIP was 52 % at 15 min of infection, which resulted in the decrease in lytic activity (12 %). Understanding the interaction of phage and bacteria is essential for the practical application of phage to control and detect antibiotic-resistant bacteria. The results provide useful information for understanding the binding specificity of phages for multiple antibiotic-resistant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angus BL, Carey AM, Caron DA, Kropinski AM, Hancock RE (1982) Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob Agent Chemother 21:299–309

    Article  CAS  Google Scholar 

  • Ball P et al (2002) Antibiotic therapy of community respiratory tract infections: strategies for optimal outcomes and minimized resistance emergence. J Antimicrob Chemother 49:31–40

    Article  CAS  PubMed  Google Scholar 

  • Birošová L, Mikulášová M (2009) Development of triclosan and antibiotic resistance in Salmonella enterica serovar Typhimurium. J Med Microbiol 58:436–441

    Article  PubMed  Google Scholar 

  • Brunelle BW, Bearson BL, Bearson SMD (2015) Chloramphenicol and tetracycline decrease motility and increase invasion and attachment gene expression in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium. Front Microbiol 5:1–12

    Article  Google Scholar 

  • Chadha T, Zak JC (2013) Motility and β-lactamases: occurrences of antibiotic resistance in nosocomial infections. J Data Min Genom Proteom 4:1000126

    Google Scholar 

  • CLSI (2014) Performance standards for antimicrobial susceptibility testing; Twenty-fourth informational supplement. Fifteenth informational supplement M100-S24 Clinical and Laboratory Standards Institute, Wayne, PA

  • Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol Microbiol 96:437–447

    Article  CAS  PubMed  Google Scholar 

  • Dahiya S et al (2014) Induction of resistant mutants of Salmonella enterica serotype Typhi under ciprofloxacin selective pressure. Indian J Med Res 139:746–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalhoff A (2012) Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis 2012:37

    Google Scholar 

  • Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochem Biophy Acta 1794:808–816

    CAS  Google Scholar 

  • Eaves DJ et al (2004) Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob Agent Chemother 48:4012–4015

    Article  CAS  Google Scholar 

  • Giraud E, Cloeckaert A, Kerboeuf D, Chaslus-Dancla E (2000) Evidence for active efflux as the primary mechanism of resistance to ciprofloxacin in Salmonella enterica serovar Typhimurium. Antimicrob Agent Chemother 44:1223–1228

    Article  CAS  Google Scholar 

  • Hirose K et al (2002) DNA sequence analysis of DNA gyrase and DNA topoisomerase IV quinolone resistance-determining regions of Salmonella enterica serovar Typhi and serovar Paratyphi A. Antimicrob Agent Chemother 46:3249–3252

    Article  CAS  Google Scholar 

  • Jacoby GA (2005) Mechanisms of resistance to quinolones. Clin Infect Dis 41:S120–S126

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Tamura N, van Veen HW, Yamaguchi A, Murakami S (2014) β-Lactam selectivity of multidrug transporters AcrB and AcrD resides in the proximal binding pocket. J Biol Chem 289:10680–10690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Mukherjee MM, Varela MF (2013) Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int J Bacteriol 2013:1–15

    Article  Google Scholar 

  • Le S et al (2013) Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One 8:e68562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y-F et al (2012) Loss of outer membrane protein C in Escherichia coli contributes to both antibiotic resistance and escaping antibody-dependent bactericidal activity. Infect Immun 80:1815–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JH, Pan YS, Yuan L, Wu H, Hu GZ, Chen YX (2013) Genetic variations in the active efflux pump genes acrA/B and tolC in different drug-induced strains of Escherichia coli CVCC 1547. Genet Mol Res 12:2829–2836

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT Method. Method 25:402–408

    Article  CAS  Google Scholar 

  • Madaras-Kelly KJ, Daniels C, Hegbloom M, Thompson M (2002) Pharmacodynamic characterization of efflux and topoisomerase IV-mediated fluoroquinolone resistance in Streptococcus pneumoniae. J Antimicrob Chemother 50:211–218

    Article  CAS  PubMed  Google Scholar 

  • Marutani M et al (2008) Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction. Mol Genet Genom 279:313–322

    Article  CAS  Google Scholar 

  • Matsumoto Y et al (2011) Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels. PLoS One 6:e18547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meaden S, Koskella B (2013) Exploring the risks of phage application in the environment. Front Microbiol 4:1–8

    Article  Google Scholar 

  • Michéa-Hamzehpour M, Kahr A, Pechère JC (1994) In vitro stepwise selection of resistance to quinolones, β-lactams and amikacin in nosocomial gram-negative bacilli. Infection 22:S105–S110

    Article  PubMed  Google Scholar 

  • Parry CM, Threlfall EJ (2008) Antimicrobial resistance in typhoidal and nontyphoidal salmonellae. Curr Opin Infect Dis 21:531–538

    Article  CAS  PubMed  Google Scholar 

  • Pickard D et al (2010) A conserved acetyl esterase domain targets diverse bacteriophages to the Vi capsular receptor of salmonella enterica serovar typhi. J Bacteriol 192:5746–5754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard JE et al (2012) In vitro evaluation of the potential for resistance development to ceragenin CSA-13. J Antimicrob Chemother 67:2665–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qimron U, Marintcheva B, Tabor S, Richardson CC (2006) Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Nat Acad Sci 103:19039–19044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakhuba DV, Kolomiets EI, Dey ES, Novik GI (2010) Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Polish J Microbiol 59:145–155

    CAS  Google Scholar 

  • Rasia RM, Vila AJ (2003) Mechanistic study of the hydrolysis of nitrocefin mediated by B. cereus metallo-β-lactamase. Arch Org Chem 2003:507–516

    Google Scholar 

  • Rosenberg EY, Ma D, Nikaido H (2000) AcrD of Escherichia coli Is an aminoglycoside efflux pump. J Bacteriol 182:1754–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Ramnani P, Virdi JS (2004) Detection and assay of β-lactamases in clinical and non-clinical strains of Yersinia enterocolitica biovar 1A. J Antimicrob Chemother 54:401–405

    Article  CAS  PubMed  Google Scholar 

  • Stecher B, Hapfelmeier S, Müller C, Kremer M, Stallmach T, Hardt W-D (2004) Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 72:4138–4150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenney JH, Maack RW, Chippendale GR (1983) Rapid selection of organisms with increasing resistance on subinhibitory concentrations of norfloxacin in agar. Antimicrob Agent Chemother 23:188–189

    Article  CAS  Google Scholar 

  • Vandamme EJ (2014) Phage therapy and phage control: to be revisited urgently!! J Chem Technol Biotechnol 89:329–333

    Article  CAS  Google Scholar 

  • Yabe S et al (2010) In vitro susceptibility to antimicrobial agents and ultrastructural characteristics related to swimming motility and drug action in Campylobacter jejuni and C. coli. J Infect Chemother 16:174–185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: HI15C-1798-010015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhee Ahn.

Additional information

Communicated by Erko Stackebrandt.

Jeongjin Kim and Ara Jo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Jo, A., Ding, T. et al. Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium. Arch Microbiol 198, 521–529 (2016). https://doi.org/10.1007/s00203-016-1210-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1210-z

Keywords

Navigation