Skip to main content

Advertisement

Log in

Biofilm, pathogenesis and prevention—a journey to break the wall: a review

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Biofilms contain group(s) of microorganisms that are found to be associated with the biotic and abiotic surfaces. Biofilms contain either homogenous or heterogeneous populations of bacteria which remain in the matrix made up of extracellular polymeric substances secreted by constituent population of the biofilm. Biofilms can be either single or multilayered. Biofilms are an increasing issue of concern that is gaining importance with each passing day. Due to the ubiquitous nature of biofilms, it is difficult to eradicate them. It has been seen that many infectious diseases harbour biofilms of bacterial pathogens as the reservoir of persisting infections which can prove fatal at times. The presence of biofilms can be seen in diseases like endocarditis, cystic fibrosis, periodontitis, rhinosinusitis and osteomyelitis. The presence of biofilms has been mostly seen in medical implants and urinary catheters. Various signalling events including two-component signalling, extra cytoplasmic function and quorum sensing are involved in the formation of biofilms. The presence of an extracellular polymeric matrix in biofilms makes it difficult for the antimicrobials to act on them and make the bacteria tolerant to antibiotics and other drugs. The aim of this review was to discuss about the basic formation of a biofilm, various signalling cascades involved in biofilm formation, possible mechanisms of drug resistance in biofilms and recent therapeutic approaches involved in successful eradication of biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akiyama H, Huh WK, Yamasaki O, Oono T, Iwatsuki K (2002) Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in mouse skin: does S. aureus generally produce a biofilm on damaged skin? Br J Dermatol 147(5):879–885

    Article  PubMed  CAS  Google Scholar 

  • Alhede M, Alhede M (2014) The biofilm challenge. EWMA J 14:1

    Google Scholar 

  • Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391

    Article  PubMed  CAS  Google Scholar 

  • Annapoorani A, Umamageswaran V, Parameswari R, Pandian SK, Ravi AV (2012) Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J Comput Aided Mol Des 26(9):1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P (2010) Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85(4):1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms properties, regulation and roles in human disease. Virulence 2(5):445–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Rajash KV (2010) High-density polyethylene(HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51(2):205–211

    PubMed  CAS  Google Scholar 

  • Baveja JK, Willcox MDP, Hume EBH, Kumar N, Odell R, Poole-Warren LA (2004) Furanones as potential anti-bacterial coatings on biomaterials. Biomaterials 25(20):5003–5012

    Article  PubMed  CAS  Google Scholar 

  • Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121(s136):1–58

    Article  CAS  Google Scholar 

  • Blackledge MS, Worthington RJ, Melander C (2013) Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol 13(5):699–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boles BR, Thoendel M, Roth AJ, Horswill AR (2010) Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One 5(4):e10146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bordi C, de Bentzmann S (2011) Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive Care 1(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowling FL, Jude EB, Boulton AJ (2009) MRSA and diabetic foot wounds: contaminating or infecting organisms? Curr Diabetes Rep 9(6):440–444

    Article  Google Scholar 

  • Boyce BM, Lindsey BA, Clovis NB, Smith ES, Hobbs GR, Hubbard DF, Emery SE, Barnett JB, Li B (2012) Additive effects of exogenous IL-12 supplementation and antibiotic treatment in infection prophylaxis. J Orthop Res 30(2):196–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brencic A, McFarland KA, McManus HR, Castang S, Mogno I, Dove SL, Lory S (2009) The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73(3):434–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brinkman FS, Macfarlane EL, Warrener P, Hancock RE (2001) Evolutionary relationships among virulence-associated histidine kinases. Infect Immun 69(8):5207–5211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruellhoff K, Fiedler J, Moller M, Groll J, Brenner RE (2010) Surface coating strategies to prevent biofilm formation on implant surfaces. Int J Artif Organs 33(9):646–653

    PubMed  CAS  Google Scholar 

  • Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA (2012) Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One 7(6):e38492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S (2007) Susceptibility of Staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75(1):125–132

    Article  PubMed  CAS  Google Scholar 

  • Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28(29):4192–4199

    Article  PubMed  CAS  Google Scholar 

  • Ciampolini J, Harding KG (2000) Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J 76(898):479–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GC, Parsek MR (2011) The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7(1):e1001264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cortes ME, Consuegra J, Sinisterra RD (2011) Biofilm formation, control and novel strategies for eradication. Sci Against Microbial Pathog Commun Curr Res Technol Adv 2:896–905

    Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  PubMed  CAS  Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67(10):5427–5433

    PubMed  PubMed Central  CAS  Google Scholar 

  • Crossley KB, Jefferson KK, Archer GL, Fowler VG (2009) Staphylococci in human disease, 2nd illustrated edn. Blackwell, West Sussex

    Book  Google Scholar 

  • Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191(5):1393–1403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298

    Article  PubMed  CAS  Google Scholar 

  • De Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structure on oxygen distribution and mass transport. Biotechnol Bioeng 43(11):1131–1138

    Article  PubMed  Google Scholar 

  • De Boer W, Gunnewiek PK, Veenhuis M, Bock E, Laanbroek HJ (1991) Nitrification at low pH by aggregated chemolithotrophic bacteria. Appl Environ Microbiol 57(12):3600–3604

    PubMed  PubMed Central  Google Scholar 

  • De la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16(5):580–589

    Article  PubMed  CAS  Google Scholar 

  • Ding X, Yin B, Qian L, Zeng Z, Yang Z, Li H, Lu Y, Zhou S (2011) Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J Med Microbiol 60(12):1827–1834

    Article  PubMed  CAS  Google Scholar 

  • Donlan RM (2011) Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clin Infect Dis 52(8):1038–1045

    Article  PubMed  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287(5459):1796–1799

    Article  PubMed  CAS  Google Scholar 

  • Feldman MF, Wacker M, Hernandez M, Hitchen PG, Marolda CL, Kowarik M, Morris HR, Dell A, Valvano MA, Aebi M (2005) Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci USA 102(8):3016–3021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    PubMed  CAS  Google Scholar 

  • Foreman A, Wormald PJ (2010) Different biofilms, different disease? A clinical outcomes study. Laryngoscope 120(8):1701–1706

    Article  PubMed  Google Scholar 

  • Fraimow HS (2009) Systemic antimicrobial therapy in osteomyelitis. Semin Plast Surg 23(2):90

    Article  PubMed  PubMed Central  Google Scholar 

  • Franklin MJ, Nivens DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 22(2):167

    Google Scholar 

  • Fridman M, Williams GD, Muzamal U, Hunter H, Siu KW, Golemi-Kotra D (2013) Two unique phosphorylation-driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cell-wall charge: Stk1/Stp1 meets GraSR. Biochemistry 52(45):7975–7986

    Article  PubMed  CAS  Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056

    Article  CAS  Google Scholar 

  • Gjodsbol K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, Krogfelt KA (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3(3):225–231

    Article  PubMed  Google Scholar 

  • Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H, Nolan LM, Mililli L, Hunt C, Lu J, Osvath SR, Monahan LG, Cavaliere R, Charles IG, Wand MP, Gee ML, Prabhakar R, Whitchurch CB (2013) Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci 110(28):11541–11546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon CA, Hodges NA, Marriott C (1988) Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother 22(5):667–674

    Article  PubMed  CAS  Google Scholar 

  • Gottenbos B, van der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ (2002) In vitro and in vivo antimicrobial activity of covalently coupled quarternary ammonium silane coatings on silicone rubber. Biomaterials 23(6):1417–1423

    Article  PubMed  CAS  Google Scholar 

  • Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43(6):1367–1378

    Article  PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11(7):1034–1043

    Article  PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  PubMed  CAS  Google Scholar 

  • Hansson C, Hoborn J, Moller A, Swanbeck G (1995) The microbial flora in venous leg ulcers without clinical signs of infection. Repeated culture using a validated standardised microbiological technique. Acta Derm Venereol 75(1):24–30

    PubMed  CAS  Google Scholar 

  • Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 38(6):704–713

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Rothballer M, Hense BA, Schroder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci Front Plant Sci 5:131

    PubMed  Google Scholar 

  • Hay ID, Gatland K, Campisano A, Jordens JZ, Rehm BH (2009) Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain. Appl Environ Microbiol 75(18):6022–6025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110

    Article  PubMed  CAS  Google Scholar 

  • Humblot V, Yala JF, Thebault P, Boukerma K, Hequet A, Berjeaud JM, Pradier CM (2009) The antibacterial activity of Mangainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials 30(21):3503–3512

    Article  PubMed  CAS  Google Scholar 

  • Hurlow J, Couch K, Laforet K, Bolton L, Metcalf D, Bowler P (2015) Clinical biofilms: a challenging frontier in wound care. Adv Wound Care 4(5):295–301

    Article  Google Scholar 

  • Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74(2):470–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, Jensen PO, Moser C, Nielsen KF, Eberl L, Larsen TO, Tanner D, Hoiby N, Bjarnsholt T, Givskov M (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56(5):2314–2325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jonas K, Melefors O, Romling U (2009) Regulation of c-di-GMP metabolism in biofilms. Future Microbiol 4(3):341–358

    Article  PubMed  CAS  Google Scholar 

  • Kaplan JB, Ragunath C, Velliyagounder K, Fine DH, Ramasubbu N (2004) Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 48(7):2633–2636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73(2):310–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HS, Park HD (2013) Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS One 8(9):e76106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch C, Hoiby N (1993) Pathogenesis of cystic fibrosis. Lancet 341(8852):1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Kokare CR, Kadam SS, Mahadik KR, Chopade BA (2007) Studies on bioemulsifier production from marine Streptomyces sp. S1. Indian J Biotechnol 6(1):78–84

    CAS  Google Scholar 

  • Kokare CR, Chakraborty S, Khopade AN, Mahadik KR (2009) Biofilm: importance and applications. Indian J Biotechnol 8(2):159–168

    CAS  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328(5978):627–629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong W, Chen L, Zhao J, Shen T, Surette MG, Shen L, Duan K (2013) Hybrid sensor kinase PA1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS. Mol Microbiol 88(4):784–797

    Article  PubMed  CAS  Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the post antibiotic era. Cold Spring Harb Perspect Med 3(4):a010306:1–23

    Article  CAS  Google Scholar 

  • Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42(1):9–27

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Abbas AK, Fausto N, Mitchell R (2007) Robbins basic pathology, 8th edn. Elsevier. pp 810–811. ISBN 978-1-4160-2973-1

  • Kumon H, Tomochika KI, Matunaga T, Ogawa M, Ohmori H (1994) A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol 38(8):615–619

    Article  PubMed  CAS  Google Scholar 

  • Lamont RJ, Jenkinson HF (1998) Life below gum line: pathogenetic mechanisms of Porphromonas gingivalis. Microbiol Mol Biol Rev 62(4):1244–1263

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lamppa JW, Griswold KE (2013) Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob Agents Chemother 57(1):137–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364(9431):369–379

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45(4):999–1007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis K, Klibanov AM (2005) Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol 23(7):343–348

    Article  PubMed  CAS  Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15(2):194–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Y, Chen M, Jones JE, Ritts AC, Yu Q, Sun H (2012) Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating. Antimicrob Agents Chemother 56(11):5923–5937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG (2008) Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. J Biomed Mater Res Part A 84(2):425–435

    Article  CAS  Google Scholar 

  • Maric S, Vranes J (2007) Characteristics and significance of microbial biofilm formation. Period Bilogor 109:115–121

    Google Scholar 

  • Masak J, Cejkova A, Schreiberova O, Rezanka T (2014) Pseudomonas biofilms: possibilities of their control. FEMS Microbiol Ecol 89(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Massol-Deya AA, Whallon J, Hickey RF, Tiedje JM (1995) Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater. Appl Environ Microbiol 61(2):769–777

    PubMed  PubMed Central  CAS  Google Scholar 

  • Moreau-Marquis S, O’Toole GA, Stanton BA (2009) Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am J Respir Cell Mol Biol 41(3):305–313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nichols WW, Dorrington SM, Slack MP, Walmsley HL (1988) Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother 32(4):518–523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osmon DR, Berbari EF (2002) Outpatient intravenous antimicrobial therapy for the practicing orthopaedic surgeon. Clin Orthop Relat Res 403:80–86

    Article  PubMed  Google Scholar 

  • Otto M (2009) Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat Rev Microbiol 7(8):555–567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otto M (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 64:175–188

    Article  PubMed  CAS  Google Scholar 

  • Overman PR (2007) Biofilm : a new view of plaque. J Contemp Dent Pract 1(3):18–29

    Google Scholar 

  • Paerl HW, Pinckney JL (1996) A minireview of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247

    Article  PubMed  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48(1):49–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57(1):677–701

    Article  PubMed  CAS  Google Scholar 

  • Perez-Giraldo C, Rodriguez-Benito A, Moran FJ, Hurtado C, Blanco MT, Gomez-Garcia AC (1997) Influence of N-acetylcysteine on the formation of biofilm by Staphylococcus epidermidis. J Antimicrob Chemother 39(5):643–646

    Article  PubMed  CAS  Google Scholar 

  • Perlroth J, Kuo M, Tan J, Bayer AS, Miller LG (2008) Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections: a systematic review of the literature. Arch Intern Med 168(8):805–819

    Article  PubMed  CAS  Google Scholar 

  • Podbielski A, Kreikemeyer B (2004) Cell density-dependent regulation: basic principles and effects on the virulence of Gram-positive cocci. Int J Infect Dis 8(2):81–95

    Article  PubMed  CAS  Google Scholar 

  • Privett BJ, Youn J, Hong SA, Lee J, Han J, Shin JH, Schoenfisch MH (2011) Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir 27(15):9597–9601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43(3):1183–1191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao N, Ziran BH, Lipsky BA (2011) Treating osteomylitis: antibiotics and surgery. Plast Reconstr Surg 127(1):177S–187S

    Article  PubMed  CAS  Google Scholar 

  • Rasamiravaka T, Jedrzejowski A, Kiendrebeogo M, Rajaonson S, Randriamampionona D, Rabemanantsoa C, Andriantsimahavandy A, Rasamindrakotroka A, Duez P, El Jaziri M, Vandeputte OM (2013) Endemic malagasy Dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1. Microbiology 159(Pt 5):924–938

    Article  PubMed  CAS  Google Scholar 

  • Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res Int 2015:1–17

    Article  Google Scholar 

  • Reid DW, O’May C, Kirov SM, Roddam L, Lamont IL, Sanderson K (2009) Iron chelation directed against biofilms as an adjunct to conventional antibiotics. Am J Physiol Lung Cell Mol Physiol 296:L857–L858

    Article  PubMed  CAS  Google Scholar 

  • Sarabhai S, Sharma P, Capalash N (2013) Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 8(1):e53441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15(12):1468–1480

    Article  PubMed  CAS  Google Scholar 

  • Schultz G, Phillips P, Yang Q, Stewart PS (2010) Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. J Wound Care 19(8):320

    Article  PubMed  Google Scholar 

  • Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R (2014) Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals 42(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T (1997) Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43(5):340–345

    Article  PubMed  CAS  Google Scholar 

  • Simoes M, Pereira MO, Vieira MJ (2005) Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes. Water Res 39(2):478–486

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764

    Article  PubMed  CAS  Google Scholar 

  • Stephenson MF, Mfuna L, Dowd SE, Wolcott RD, Barbeau J, Poisson M, James G, Desrosiers M (2010) Molecular characterization of the polymicrobial flora in chronic rhinosinusitis. J Otolaryngol Head Neck Surg 39(2):182–187

    PubMed  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138

    Article  PubMed  CAS  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69(1):183–215

    Article  PubMed  CAS  Google Scholar 

  • Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002a) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29(6):361–367

    Article  PubMed  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002b) Biofilms as complex differentiated communities. Annu Rev Microbiol 56(1):187–209

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (1999) Polysaccharases for microbial exopolysaccharides. Carbohydr Polym 38(4):319–328

    Article  CAS  Google Scholar 

  • Tack KJ, Sabath LD (1985) Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy 31(3):204–210

    Article  PubMed  CAS  Google Scholar 

  • Tribedi P, Sil AK (2014) Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2. J Appl Microbiol 116(2):295–303

    Article  PubMed  CAS  Google Scholar 

  • Tribedi P, Gupta AD, Sil AK (2015) Adaptation of Pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: an effective strategy for efficient survival and polymer degradation. Bioresour Bioprocess 2(1):1–10

    Article  Google Scholar 

  • Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132(5):1297–1304

    PubMed  CAS  Google Scholar 

  • Vasudevan R (2014) Biofilms: microbial cities of scientific significance. J Microbiol Exp 1(3):00014

    Google Scholar 

  • von Eiff C, Heilmann C, Herrmann M, Peters G (1999) Basic aspects of the pathogenesis of staphylococcal polymer associated infections. Infection 27:S7–S10

    Article  Google Scholar 

  • Wahlig H, Dingeldein E (1980) Antibiotics and bone cements experimental and clinical long-term observations. Acta Orthop Acta Orthop Scand 51(1):49–56

    Article  PubMed  CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487

    Article  PubMed  CAS  Google Scholar 

  • Wilson M (2001) Bacterial biofilms and human disease. Sci Prog 84(3):235–254

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Liu Y, Wu H, Song Z, Hoiby N, Molin S, Givskov M (2012) Combating biofilms. FEMS Immunol Med Microbiol 65(2):146–157

    Article  PubMed  CAS  Google Scholar 

  • Ziran BH (2007) Osteomyelitis. J Trauma 62(6):59–60

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Manash Chandra Das, Trishna Mahanty, Antu Das and Maumita Saha for their valuable contributions for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosun Tribedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Sarkar, S., Das, B. et al. Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol 198, 1–15 (2016). https://doi.org/10.1007/s00203-015-1148-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1148-6

Keywords

Navigation