Skip to main content

Advertisement

Log in

An ecological role of fungal endophytes to ameliorate plants under biotic stress

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

It is our consensus that plants survive and flourish in stressed ecosystems because of endosymbiotic organisms that have co-evolved and were essential for their adaptation to changing environments. Some of these microbial components are noncultivable and vertically transmitted from generation to generation. They represent a vast reservoir of heritable DNA that can enhance plant performance in changing environments and add genetic flexibility to adaptation of long-lived plants. If such endophytes can be identified that not only persist in progeny of novel hosts, but can confer benefits in mechanized, agricultural systems, they would be increasingly important in agricultural production and lead to a rapid and economical method of providing novel germplasms of native and crop plants. In the present review, authors advocate the deployment of fungal diversity and its role to overcome the biotic stress in plants. Endophytic fungal association with plants helps it to protect from various pathogen and pests and adapt to survive in harsh biotic and abiotic stress condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrectsen BR, Bjorken L, Varad A, Hagner A, Wedin M, Karlsson J et al (2010) Endophytic fungi in European aspen (Populus tremula) leaves: diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28

    Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecol 88:541–549

    Google Scholar 

  • Arnold AE, Maynard Z, Gilbert G, Coley PD, Kursar TA (2000) Are tropical endophytic fungi hyper diverse. Ecol Lett 3:267–274

    Google Scholar 

  • Arnold JG, Allen PM, Morgan DS (2001) Hydrologic model for design and constructed wetlands. Wetlands 21(2):167–178

    Google Scholar 

  • Arnold AE, Mejıa LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acd Sci USA 100:15649–15654

    CAS  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreńo AM, Paz JA, Garcia-Mina JM, Pozo MJ, Lopez Raez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    CAS  PubMed  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker Inc., New York

    Google Scholar 

  • Bacon CW, Yates IE (2006) Endophytic root colonization by Fusarium species: histology, plant interactions and toxicity. In: Schultz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin

    Google Scholar 

  • Bae H, Kim S, Sicher RC Jr, Kim MS, Strem MD, Bailey BA (2008) The beneficial endophyte, Trichoderma hamatum, delays the onset of drought stress in Theobroma cacao. Bio Control 46:24–35

    Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J et al (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    CAS  PubMed  Google Scholar 

  • Barka EA, Belarbi A, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186:91–95

    CAS  PubMed  Google Scholar 

  • Bezerra JDP, Santos MGS, Svedese VM (2012) Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28(5):1989–1995

    CAS  PubMed  Google Scholar 

  • Breithaupt H (2003) Back to the roots. Embo Reports 4:10–12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bultman TL, Murphy JC (2000) Do fungal endophytes mediate wound-induced resistance? In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 421–453

    Google Scholar 

  • Chadha N, Mishra M, Prasad R, Varma A (2014) Root endophytic fungi: research update. J Biol Life Sci USA 5:135–158. doi:10.5296/jblsjbls.v5i2.59605960

    Google Scholar 

  • Choudhary DK, Sharma KP, Gaur RK (2011) Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett 33:1905–1910

    CAS  PubMed  Google Scholar 

  • Daneshkhah R, Cabello S, Rozanska E, Sobczak M, Grundler FMW, Wieczorek K, Hofmann J (2013) Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots. J Exp Bot 64:3763–3774

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davey ML, Currah RS (2006) Interactions between mosses (Bryophyta) and fungi. Can J Bot 84:1509–1519

    Google Scholar 

  • Dingle J, McGee PA (2003) Some endophytic fungi reduce the density of pustules of Puccinia recondite f. sp. tritici in wheat. Mycol Res 107:310–316

    PubMed  Google Scholar 

  • Ernst M, Mendgen KW, Wirsel SGR (2003) Endophytic fungal mutualists: seed-borne Stagonospora sp. enhance reed biomass production in axenic microcosms. Mol Plant-Microbe Inter 16:580–587

    CAS  Google Scholar 

  • Faeth S, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368

    PubMed  Google Scholar 

  • Gangadevi V, Muthumary J (2007) Preliminary studies on cytotoxic effect of fungal taxol on cancer cell lines. African J Biotechnol 6(12):1382–1386

    CAS  Google Scholar 

  • Ganley RJ, Brunsfeld SJ, Newcombe G (2004) A community of unknown endophytic fungi in western white pine. Proc Nat Acad Sci USA 101:10107–10112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ganley RJ, Sniezko RA, Newcombe G (2008) Endophyte-mediated resistance against white pine blister rust in Pinus monticola. For Ecol Manage 255:2751–2760

    Google Scholar 

  • Gimenez C, Cabrera R, Reina M, Gonzales-Coloma A (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 11(8):707–720

    CAS  Google Scholar 

  • Glienke-Blanco C, Aguilar-Vildoso CI, Vieira MLC, Barroso PAV, Azevedo JL (2002) Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants. Genet Mol Biol 25(2):251–255

    CAS  Google Scholar 

  • Grosch R, Scherwinski K, Lottmann J, Berg G (2006) Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycol Res 110:1464–1474

    CAS  PubMed  Google Scholar 

  • Guo LD, Huang GR, Wang Y (2008) Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in Dongling Mountain, Beijing. J Integr Plant Biol 50:997–1003

    PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  PubMed  Google Scholar 

  • Hata K, Sone K (2008) Isolation of endophytes from leaves of Neolitsea sericea in broadleaf and conifer stands. Mycoscience 49(4):229–232

    Google Scholar 

  • Hata K, Atari R, Sone K (2002) Isolation of endophytic fungi from leaves of Pasania edulis and their within-leaf distributions. Mycoscience 43(5):369–373

    Google Scholar 

  • He X, Han G, Lin Y (2012) Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecol Res 27(2):273–284

    Google Scholar 

  • Helldén U, Tottrup C (2008) Regional desertification: a global Synthesis. Global Planetary Change 64:169–176

    Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    CAS  PubMed  Google Scholar 

  • Hyde KD, Bussaban B, Paulus B, Crous PW, Lee S, Mckenzie EHC et al (2007) Diversity of saprobic microfungi. Biodiv Conser 16:7–35

    Google Scholar 

  • Istifadah N, McGee PA (2006) Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Aust J Plant Pathol 35:411–418

    Google Scholar 

  • Kathiresan K (2000) A review of studies on Pichavaram mangrove, Southern India. Hydrobiology 430:185–205

    Google Scholar 

  • Kavroulakis NS, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou KK (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864

    CAS  PubMed  Google Scholar 

  • Király L, Barna B, Király Z (2007) Plant resistance to pathogen infections: forms and mechanisms of innate and acquired resistance. J Phytopathol 158:385–396

    Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-year-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    PubMed  Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Google Scholar 

  • Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Div 17:69–90

    CAS  Google Scholar 

  • Larran S, Mόnaco C, Alippi HE (2001) Endophytic fungi in leaves of Lycopersicon esculentum Mill. World J Microbiol Biotechnol 17(2):181–184

    Google Scholar 

  • Larran S, Perellό A, Simόn MR, Moreno V (2002) Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World J Microbiol Biotechnol 18(7):683–686

    CAS  Google Scholar 

  • Li WC, Guo SY, Guo LD (2007a) Endophytic fungi associated with lichen Physcia stellaris using different surface sterilization methods. J Fungal Res 5:202–206

    Google Scholar 

  • Li WC, Zhou J, Guo SY, Guo LD (2007b) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80

    Google Scholar 

  • Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Div 54:11–18

    Google Scholar 

  • Liu CH, Zou WX, Lu H, Tan RX (2001) Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi. J Biotechnol 88:277–282

    CAS  PubMed  Google Scholar 

  • Liu L, Liu SC, Jiang LH, Chen XL, Guo LD, Che YS (2008) Chloropupukeananin, the first chlorinated pupukeanane derivative and its precursors from Pestalotiopsis fici. Org Lett 10:1397–1400

    CAS  PubMed  Google Scholar 

  • Liu K, Ding X, Deng B, Chen W (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36(9):1171–1177

    CAS  PubMed  Google Scholar 

  • Liu L, Niu SB, Lu XH, Chen XL, Zhang H, Guo LD, Che YS (2010) Unique metabolites of Pestalotiopsis fici suggest a biosynthetic hypothesis involving a Diels–Alder reaction and then mechanistic diversification. Chem Commun 46:460–462

    CAS  Google Scholar 

  • Liu L, Bruhn T, Guo LD, Götz DCG, Brun BR, Stich A et al (2011) Chloropupukeanolides C–E, cytotoxic pupukeanane chlorides with a spiroketal skeleton from Pestalotiopsis fici. Chem Eur J 17:2604–2613

    CAS  PubMed  Google Scholar 

  • Maciá-vicente JG, Jansson H-B, Abdullah SK, Descals E, Salinas J, Lopez-llorca LV (2008a) Fungal root endophytes from natural vegetation in mediterranean environments with special reference to fusarium spp. FEMS Microbiol Ecol 64:90–105

    PubMed  Google Scholar 

  • Maciá-vicente JG, Jansson H-B, Mendgen K, Lopezllorca LV (2008b) Colonization of barley roots by endophytic fungi and their reduction of take-all caused by gaeumannomyces Graminis var. Tritici. Can J Microbiol 54:600–609

    PubMed  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophtye-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    CAS  Google Scholar 

  • Malinowski DP, Zuo H, Belesky DP, Alloush GA (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 267:1–12

    CAS  Google Scholar 

  • Manoharachary C, Sridhar K, Singh R, Adholeya A, Suryanarayana TS, Rawat S et al (2005) Fungal biodiversity: distribution, conservation and prospecting of fungi from India. Curr Sci 89(1):58–71

    Google Scholar 

  • Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ii Ouzar, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. BioMed Res Int. doi:10.1155/2013/248078

    PubMed Central  PubMed  Google Scholar 

  • Maria GL, Sridhar KR (2002) Richness and diversity of filamentous fungi on woody litter of mangroves along the west coast of India. Curr Sci 83:1573–1581

    Google Scholar 

  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    PubMed  Google Scholar 

  • Mejıa LC, Rojas EI, Maynard Z, Bael SV, Elizabeth Arnold A, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14

    Google Scholar 

  • Mendoza AR, Sikora RA (2009) Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. Biocontrol 54(2):263–272

    Google Scholar 

  • Mishra M, Prasad R, Varma A (2014) Rootonic with Bio-Zinc to accelerate Pennisetum glauccum seed germination and plant growth. Int J Plant Ani Env Sci 4(3):552–561

    Google Scholar 

  • Mohamed R, Jong PL, Zali MS (2010) Fungal diversity in wounded stems of Aquilaria malaccensis. Fungal Divers 43:67–74

    Google Scholar 

  • Mohanta J, Tayung K, Mohapatra UB (2008) Antimicrobial potentials of endophytic fungi inhabiting three ethnomedicinal plants of Similipal Biosphere Reserve, India. Internet J Microbiol 5:2

  • Molitor A, Kogel KH (2009) Induced resistance triggered by Piriformospora indica. Plant Sig Behav 4:215–216

    CAS  Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathol 98(4):380–386

    CAS  Google Scholar 

  • Müller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456

    PubMed  Google Scholar 

  • Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J. doi:10.1155/2014/250693

    Google Scholar 

  • Oelmuller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica- a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17

    Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Mueller CB (2001) Symbiotic fungal endophytes control insect host–parasite interaction webs. Nature 409:78–81

    CAS  PubMed  Google Scholar 

  • Otero JT, Flanagan NS, Herre EA, Ackerman JD, Bayman P (2007) Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). Am J Bot 94:1944–1950

    PubMed  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instr. doi:10.1094/PHI-A-2006-1117-02

    Google Scholar 

  • Park JH, Choi GJ, Lee HB, Kim KM, Jung HS, Lee SW et al (2005) Griseofulvin from Xylaria sp. strain F0010, and endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotech 15:112–117

    CAS  Google Scholar 

  • Pham GH, Kumari R, Singh AN, Sachdev M, Prasad R, Kaldorf M et al (2004) Axenic cultures of Piriformospora indica. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 593–616

    Google Scholar 

  • Pirttilä AM, Laukkanen H, Pospiech H, Myllylä R, Hohtola A (2000) Detection of intracellular bacteria in the buds of scotch pine (Pinus sylvestris L.) by In situ hybridization. Appl Environ Microbiol 66(7):3073–3307

    PubMed Central  PubMed  Google Scholar 

  • Pirttilä AM, Pospiech H, Laukkanen H, Myllylä R, Hohtola A (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L.). Microbial Ecol 45(1):53–62

    Google Scholar 

  • Poonyth AD, Hyde KD, Peerally A (2001) Colonization of Bruguiera gymnorrhiza and Rhizophora mucronata wood by marine fungi. Bot Mar 44:75–80

    Google Scholar 

  • Prasad R, Pham GH, Kumari R, Singh A, Yadav V, Sachdev M et al (2005) Sebacinaceae: culturable mycorrhiza-like endosymbiotic fungi and their interaction with non-transformed and transformed roots. In: Declerck S, Strullu DG, Fortin A (eds) In vitro culture of mycorrhizas. Soil Biology Series, Springer, Berlin, pp 291–312

    Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmueller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plants morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53(12):1016–1024

    CAS  PubMed  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Google Scholar 

  • Rai MK, Varma A, Pandey AK (2002) Antifungal potential of Spilanthes calva after inoculation of Piriformospora indica. Mycoses 47:479–481

    Google Scholar 

  • Rajagopal K, Kalavathy S, Kokila S, Karthikeyan S, Kathiravan G, Prasad R, Balasubraminan P (2010) Diversity of fungal endophytes in few medicinal herbs of South India. Asian J Exp Biol Sci 1(2):415–418

    Google Scholar 

  • Raviraja NS (2005) Fungal endophytes in five medicinal plant species from Kudremukh range, Western Ghats of India. J Basic Microbiol 45:230–235

    CAS  PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis Science. 298(5598):1581

    CAS  Google Scholar 

  • Rodriguez R, Redman RS (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Expl Bot 59:1109–1114

    CAS  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strategies Glob Chang 9:261–272

    Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2005) Symbiotic lifestyle expression by fungal endophytes and the adaptation of plants to stress: unravelling the complexities of intimacy. In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem. CRC Press, Boca Raton

    Google Scholar 

  • Rodriguez RJ, Henson JM, van Volkenburgh E, Hoy M, Wright I, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J2:404–416

    Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    CAS  PubMed  Google Scholar 

  • Romo M,  Leuchtmann A,  Garcia B,  Zabalgogeazcoa I (2007) A totivirus infecting the mutualistic fungal endophyte Epichloë festucae. Virus Res 124:38–43

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Google Scholar 

  • Schardl CL (2001) Epichloe festucae and related mutualistic symbionts of grasses. Fungal Genet Biol 33:69–82

    CAS  PubMed  Google Scholar 

  • Schmit JP, Mueller GM (2007) An estimate of the lower limit of global fungal diversity. Biodiv Conser 16:99–111

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Serfling A, Wirsel SGR, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97:523–531

    CAS  PubMed  Google Scholar 

  • Sherameti I, Tripathi S, Varma A, Oelmüller R (2008) The root colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Inter 21:799–807

    CAS  Google Scholar 

  • Shinya R, Aiuchi D, Kushida A, Tani M, Kuramochi K, Koike M (2008) Effect of fungal culture filtrates of Verticillium lecanii (Lecanicillium spp.) hybrid strains on Heterodera glycines eggs and juveniles. J Invert Pathol 97:291–297

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Dangre D, Rai M (2007) Biophysical phenomics reveals functional building blocks of plant system biology: a case study for the evaluation of the impact of mycorrhization with Piriformospora Indica. In: Varma A, Oelmueller R (eds) Advanced techniques in soil microbiology. Springer, Heidelberg, pp 319–338

    Google Scholar 

  • Strobel G, Ford E, Worapong J, Grant DM, Fung PC et al (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemisitry 60:179–183

    CAS  Google Scholar 

  • Su YY, Guo LD, Hyde KD (2010) Response of endophytic fungi of Stipa grandis to experimental plant function group removal in inner Mongolia steppe, China. Fungal Divers 43:93–101

    Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid localized CAS protein. J Plant Physiol 167:1009–1017

    CAS  PubMed  Google Scholar 

  • Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95

    Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Hariharan GN, Balaji P (2005) Occurrence of non-obligate microfungi inside lichen thalli. Syd 57:119–129

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    CAS  PubMed  Google Scholar 

  • Tejesvi MV, Kajula M, Mattila S, Pirttilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 47:97–107

    Google Scholar 

  • Terry LA, Joyce DC (2004) Elicitors of induced disease resistance in post harvest horticultural crops: a brief review. Postharvest Biol Technol 32:1–13

    Google Scholar 

  • Thongsandee W, Matsuda Y, Ito S (2012) Temporal variations in endophytic fungal assemblages of Ginkgo biloba L. J For Res 17(2):213–218

    Google Scholar 

  • Ting ASY, Meon S, Kadir J, Radu S, Singh G (2008) Endophytic microorganisms as potential growth promoters of banana. Biocontrol 53:541–553

    Google Scholar 

  • Tripathi S, Kamal S, Sheramati I, Oelmuller R, Varma A (2008) Mycorrhizal fungi and other root endophytes as biocontrol agents against root pathogens. Mycorrhiza 3:281–306

    Google Scholar 

  • Usuki F, Narisawa K, Yonezawa M, Kakishima M, Hashiba T (2002) An efficient inoculation method for colonization of Chinese cabbage seedlings by the root endophytic fungus Heteroconium chaetospira. J Gen Plant Pathol 68:326–332

    Google Scholar 

  • Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R (2009) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263–1274

    CAS  PubMed  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Google Scholar 

  • Varma A, Sudha S, Franken P (1999) Piriformospora indica-a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:2741–2744

    PubMed Central  CAS  PubMed  Google Scholar 

  • Varma A, Bajaj R, Agarwal A, Asthana A, Rajpal K (2013) Memoirs of ‘Rootonic’—the magic fungus. Promotes agriculture, horticulture and forest productivity. Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida

  • Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195:306–320

    CAS  PubMed  Google Scholar 

  • Venkateswara Sarma V, Hyde KD, Vittal BP (2001) Frequency of occurrence of mangrove fungi from the east coast of India. Hydrobiology 455:41–53

    Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Panis B, De Waele D, Elsen A (2011) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–345

    Google Scholar 

  • Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotics and cytotoxic dimmers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009

    CAS  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Von wettstein D, Franken P, Kogel K-H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang FW, Jiao RH, Cheng AB, Tan SH, Song YC (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol 23:79–83

    Google Scholar 

  • Wang Y, Zeng QG, Zhang ZB, Yan RM, Wang LY, Zhu D (2011) Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. J Ind Microbiol Biotechnol 38(9):1267–1278

    CAS  PubMed  Google Scholar 

  • Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers 44:15–31

    Google Scholar 

  • Zheng Z, Li M, Yaojian H, Qingyan Xu, Wenjin Su (2003) Antitumor activity of mangrove endophytic fungi. J Xiamen Univ Natl Sci 42:511–516

    Google Scholar 

Download references

Acknowledgments

In the present chapter some of the research has been partially supported by DBT, DRDO and ICAR project under guidance of Prof. (Dr.) Ajit Varma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varma.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chadha, N., Mishra, M., Rajpal, K. et al. An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch Microbiol 197, 869–881 (2015). https://doi.org/10.1007/s00203-015-1130-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1130-3

Keywords

Navigation