Skip to main content
Log in

Sphingomonas flavus sp. nov. isolated from road soil

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A yellow-colored, Gram-negative, strictly aerobic, non-motile, rod-shaped bacterium, designated THG-MM5T, was isolated from road soil in Yongin-si, Gyeonggi-do, Republic of Korea. Based on 16S rRNA gene sequence, strain THG-MM5T was moderately related to Sphingomonas sediminicola KACC 15039T (96.1 %), Sphingomonas ginsengisoli KACC 16858T (96.1 %) and Sphingomonas jaspsi KACC 13230T (96.0 %). Chemotaxonomic data revealed that strain THG-MM5T possesses ubiquinone-10 as the only respiratory quinone, sym-homospermidine as the major polyamine and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C18:1 ω7c and C16:0 as the major fatty acids. The polar lipid profile included sphingoglycolipid. The DNA G + C content was 60.7 mol%. These data, together with phenotypic characterization, corroborated the affiliation of strain THG-MM5T to the genus Sphingomonas. Thus, the isolate represents a novel species, for which the name Sphingomonas flavus sp. nov. is proposed, with THG-MM5T as the type strain (=KACC 18277T = CCTCC AB 2014320T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • An DS, Cui CH, Lee HG, Wang L, Kim SC, Lee ST, Jin F, Yu H, Chin YW, Lee HK, Im WT, Kim SG (2010) Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. β-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl Environ Microbiol 76:5827–5836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    PubMed Central  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K et al (2000) Proposal of Sphingomonadaceae Fam. nov., Consisting of Sphingomonas Yabuuchi, 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 44:563–575

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin SY, Shen FT, Lai WA, Zhu ZL, Chen WM, Chou JH, Lin ZY, Young CC (2012) Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 62:1581–1586

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T, Hamana K, Hiraishi A, Kato K (2006) Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89

    Article  CAS  PubMed  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Moore DD, Dowhan D (1995) Preparation and analysis of DNA. In: Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2–11

    Google Scholar 

  • Park HK, Han JH, Kim TS, Joung Y, Cho SH, Kwon SW, Kim SB (2015) Sphingomonas aeria sp. nov. from indoor air of a pharmaceutical environment. Antonie Van Leeuwenhoek 107(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  • Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R, Nicotra CM (2000) Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B 745:431–437

    Article  CAS  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    CAS  PubMed  Google Scholar 

  • Tamaoka J, Katayama-Fujiruma A, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacieriol 54:31–36

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  • White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7:301–306

    Article  CAS  PubMed  Google Scholar 

  • Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119

    Article  CAS  PubMed  Google Scholar 

  • Yim MS, Yau YCW, Matlow A, So JS, Zou J, Flemming CA, Schraft H, Leung KT (2010) A novel selective growth medium-PCR assay to isolate and detect Sphingomonas in environmental samples. J Microbiol Methods 82:19–27

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Liu XY, Liu SJ (2010) Sphingomonas changbaiensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60:790–795

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Si M, Li C, Xin K, Chen C, Shi X & Zhang L. (2015). Sphingomonas gei sp. nov., isolated from roots of Geum aleppicum. Int J Syst Evol Microbiol, ijs. 0.000074

Download references

Acknowledgments

This work was conducted under the industrial infrastructure program (No. N0000888) for fundamental technologies which is funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hoo Yi.

Additional information

Communicated by Erko Stackebrandt.

Juan Du and Hina Singh have equally contributed to this work.

The NCBI GenBank accession number for the 16S rRNA gene sequence of strain THG-MM5T is KM658502.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Maximum-likelihood tree based on 16S rRNA gene sequence analysis showing phylogenetic relationships between strain THG-MM5T and related members of the genus Sphingomonas. Numbers at nodes represent percentages of bootstrap support based on a maximum-likelihood analysis of 1000 resampled datasets (PDF 16 kb)

Fig. S2

Two-dimensional TLC of the total polar lipids of THG-MM5T. a and b: Total lipids were detected by spraying with 5 % molybdophosphoric acid for strain THG-MM5T and S. sediminicola KACC 15039T, respectively; c: aminolipids revealed by α-naphthol–sulfuric acid; d: phospholipids detected by spraying with 0.2 % ninhydrin; e: glycolipids detected by spraying with molybdenum blue. Abbreviations: sphingoglycolipid (SGL), phosphatidylethanolamine (PE), diphosphatidylglycerol (DPE), phosphatidylglycerol (PG), phosphatidylcholine (PC), unidentified lipids (L1–2), unidentified glycolipid (GL1–2) and unidentified aminophospholipids (APL) (PDF 102 kb)

Table 1

The negative (−) properties of API ZYM and API 20NE tests of THG-MM5T (PPTX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Singh, H., Won, K. et al. Sphingomonas flavus sp. nov. isolated from road soil. Arch Microbiol 197, 883–888 (2015). https://doi.org/10.1007/s00203-015-1123-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1123-2

Keywords

Navigation