Skip to main content
Log in

Alterations in Caenorhabditis elegans and Cronobacter sakazakii lipopolysaccharide during interaction

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Lipopolysaccharide is one of the pathogen-associated molecular patterns of Gram-negative bacteria which are essential for its pathogenicity. Cronobacter sakazakii is an opportunistic, emergent pathogen, which infects and cause mortality in Caenorhabditis elegans. In this study, modifications in host and C. sakazakii LPS during infections were evaluated. The physiological assays revealed that LPS alone is sufficient to affect the host pharyngeal pumping rate, brood size and cause lethality. FTIR spectra of LPS revealed that C. sakazakii modifies its LPS to escape from the recognition of host immune system. These results indicate that LPS plays a key role in C. sakazakii pathogenicity. qPCR studies revealed that LPS modulated the expression of selected host immune (clec-60, clec-87, lys-7, ilys-3, F08G5.6, atf-7, scl-2, cpr-2) and aging-related genes (skn-1, clk-2, bra-2, age-1, bec-1, daf-16, daf-2). Moreover, it was confirmed that p38 MAPK pathway has a major role in host immune response against LPS-mediated challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CGC:

Caenorhabditis Genetics Center

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

NGM:

Nematode growth medium

O/N:

Overnight

PCR:

Polymerase chain reaction

Pmk :

P38 MAP kinase family

RT-PCR:

Reverse-transcriptase polymerase chain reaction

Sek :

SAPK/ERK kinase

References

  • Aballay A, Drenkard E, Hilbun LR, Ausubel FM (2003) Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway. Curr Biol 13(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Bannerman DD, Goldblum SE (1999) Direct effects of endotoxin on the endothelium: barrier function and injury. Lab Invest 79:1181–1199

    CAS  PubMed  Google Scholar 

  • Bowen AB, Braden CR (2006) Invasive Enterobacter sakazakii disease in infants. Emerg Infect Dis 12:1185–1189

    Article  PubMed Central  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of C. elegans. Genetics 77:71–94

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ciornei CD, Novikov A, Beloin C et al (2010) Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immun 16(5):288–301

    Article  CAS  PubMed  Google Scholar 

  • Darby C (2005) Interactions with microbial pathogens. WormBook http://www.wormbook.org. Accessed 6 Sept 2005

  • Drudy D, Quinn NR, Wall PG, Fanning S (2006) Enterobacter sakazakii: an emergent pathogen in powdered infant formula. Clin Infect Dis 42:996–1002

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Dumen E (2010) Cronobacter sakazakii (Enterobacter sakazakii): only an infant problem? Kafkas Univ Vet Fak Derg 16:S171–S178

    Google Scholar 

  • Erickson MC, Kornacki JL (2002) Enterobacter sakazakii: an emerging food pathogen. Acedido em Fev 25:2008

    Google Scholar 

  • Irazoqui JE, Urbach JM, Ausubel FM (2010a) Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10(1):47–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irazoqui JE, Troemel ER, Feinbaum RL et al (2010b) Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog 6(7):e1000982

    Article  PubMed Central  PubMed  Google Scholar 

  • Iversen C, Lehner A, Mullane N et al (2007) The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies I. BMC Evol Biol 7:64

    Article  PubMed Central  PubMed  Google Scholar 

  • Kesika P, Pandian SK, Balamurugan K (2011) Analysis of Shigella flexneri mediated infections in model organism Caenorhabditis elegans. Scand J Infect Dis 43(4):286–295

    Article  CAS  PubMed  Google Scholar 

  • Kim JB, Cho SH, Park YB et al (2008) Surveillance of stool samples for the presence of Enterobacter sakazakii among Korean people. Yonser Med J 49:1017–1022

    Article  CAS  Google Scholar 

  • Maclean LL, Vinogradov E, Pagotto F et al (2010) The structure of the O-antigen of Cronobacter sakazakii HPB 2855 isolate involved in a neonatal infection. Carbohydr Res 345(13):1932–1937

    Article  CAS  PubMed  Google Scholar 

  • Mange JP, Stephan R, Borel N et al (2006) Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells. BMC Microbiol 6:1–10

    Article  Google Scholar 

  • Moser SC, von Elsner S, Bussing I et al (2009) Functional dissection of Caenorhabditis elegans CLK-2/TEL2 cell cycle defects during embryogenesis and germline development. PLoS Genet 5(4):e1000451

    Article  PubMed Central  PubMed  Google Scholar 

  • Mullane N, Gaora PO, Nally JE et al (2008) Molecular analysis of the Enterobacter sakazakii O-antigen gene locus. Appl Environ Microbiol 74:3783–3794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy K (2012) Innate immunity: the first lines of defense. In: Murphy K (ed) Janeway’s Immunobiology, 8th edn. Garland Science, New York, pp 37–73 (Chapter 2)

    Google Scholar 

  • Ohno N, Morrison DC (1989) Lipopolysaccharide interaction with lysozyme. Binding of lipopolysaccharide to lysozyme and inhibition of lysozyme enzymatic activity. J Biol Chem 264(8):4434–4441

    CAS  PubMed  Google Scholar 

  • Olson NC, Hellyer PW, Dodam JR (1995) Mediators and vascular effects in response to endotoxin. Br Vet J 151:489–522

    Article  CAS  PubMed  Google Scholar 

  • Ooi SK, Lim TY, Lee SH, Nathan S (2012) Burkholderia pseudomallei kills Caenorhabditis elegans through virulence mechanisms distinct from intestinal lumen colonization. Virulence 3(6):485–496

    Article  PubMed Central  PubMed  Google Scholar 

  • Papp D, Csermely P, Soti C (2012) A Role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS Pathog 8(4):e1002673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pradel E, Zhang Y, Pujol N et al (2007) Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci USA 104(7):2295–2300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubenstein HS, Fine J, Coons AH (1962) Localization of endotoxin in the walls of the peripheral vascular system during lethal endotoxemia. Proc Soc Exp Biol Med 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Sharifi AM, Hoda FE, Noor AM (2010) Studying the effect of LPS on cytotoxicity and apoptosis in PC12 neuronal cells: role of Bax, Bcl-2, and Caspase-3 protein expression. Toxicol Mech Methods 20(6):316–320

    Article  CAS  PubMed  Google Scholar 

  • Sivamaruthi B, Balamurugan K (2014) Physiological and immunological regulations in Caenorhabditis elegans infected with Salmonella enterica serovar Typhi. Indian J Microbiol 54(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Sivamaruthi BS, Ganguli A, Kumar M et al (2011) Caenorhabditis elegans as a model for studying Cronobacter sakazakii ATCC BAA-894 pathogenesis. J Basic Microbiol 51:240–249

    Article  Google Scholar 

  • Thimmulappa RK, Lee H, Rangasamy T et al (2006) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116(4):984–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Townsend S, Hurrell E, Forsythe S (2008) Virulence studies of Enterobacter sakazakii isolates associated with a neonatal intensive care unit outbreak. BMC Microbiol 8:1–9

    Article  Google Scholar 

  • Vigneshkumar B, Pandian SK, Balamurugan K (2012) Regulation of Caenorhabditis elegans and Pseudomonas aeruginosa machinery during interactions. Arch Microbiol 194(4):229–242

    Article  CAS  PubMed  Google Scholar 

  • Wilson JW, Schurr MJ, LeBlanc CL et al (2002) Mechanisms of bacterial pathogenicity. Postgrad Med J 78(918):216–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yi EC, Hackett M (2000) Rapid isolation method for lipopolysaccharide and lipid A from Gram-negative bacteria. Analyst 125(4):651–656

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Caenorhabditis Genetics Center, which is funded by the National Institutes of Health, National Center for Research Resources for providing C. elegans N2 WT, mutant strains and E. coli OP50. KB thankfully acknowledges the Department of Biotechnology (DBT), University Grand Commission (UGC), Indian Council of Medical Research (ICMR) and Council of Scientific and Industrial Research (CSIR), Department of Science and Technology (DST), Government of India, New Delhi, India, for the financial assistances. BS wishes to thank DBT and CSIR, India, for the financial assistance (DBT-JRF & CSIR-SRF). The authors also gratefully acknowledge the use of the Bioinformatics Infrastructure Facility, Alagappa University funded by the Department of Biotechnology, Ministry of Science and Technology, Government of India (No. BT/BI/25/001/2006).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnaswamy Balamurugan.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivamaruthi, B.S., Prasanth, M.I. & Balamurugan, K. Alterations in Caenorhabditis elegans and Cronobacter sakazakii lipopolysaccharide during interaction. Arch Microbiol 197, 327–337 (2015). https://doi.org/10.1007/s00203-014-1064-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1064-1

Keywords

Navigation