Skip to main content
Log in

Proteomic profiling of Botrytis cinerea conidial germination

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Botrytis cinerea is one of the most relevant plant pathogenic fungi. The first step during its infection process is the germination of the conidia. Here, we report on the first proteome analysis during the germination of B. cinerea conidia, where 204 spots showed significant differences in their accumulation between ungerminated and germinated conidia by two-dimensional polyacrylamide gel electrophoresis and qPCR. The identified proteins were grouped by gene ontology revealing that the infective tools are mainly preformed inside the ungerminated conidia allowing a quick fungal development at the early stages of conidial germination. From 118 identified spots, several virulence factors have been identified while proteins, such as mannitol-1-phosphate dehydrogenase, 6,7-dimethyl-8-ribityllumazine synthase or uracil phosphoribosyltransferase, have been disclosed as a new potential virulence factors in botrytis whose role in pathogenicity needs to be studied to gain new insights about the role of these proteins as therapeutic targets and virulence factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SDW:

Sterile distilled water

HPI:

Hour post inoculation

GO:

Gene ontology

ID:

Identification

References

  • Becker JM et al (2010) Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model. Proc Natl Acad Sci USA 107:22044–22049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhadauria V, Popescu L, Zhao W-S, Peng Y-L (2007) Fungal transcriptomics. Microbiol Res 162:285–298

    Article  CAS  PubMed  Google Scholar 

  • Cherrad S et al (2012) Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity. Metallomics 4:835–846

    Article  CAS  PubMed  Google Scholar 

  • Choquer M et al (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 227(1):1–10

  • Cochrane VW, Cochrane JC (1970) Chlamydospore development in the absence of protein synthesis in Fusarium solani. Dev Biol 23:345–354

    Article  CAS  PubMed  Google Scholar 

  • Cooper B et al (2007) Protein accumulation in the germinating Uromyces appendiculatus uredospore. Mol Plant Microbe Interact 20:857–866

    Article  CAS  PubMed  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  CAS  PubMed  Google Scholar 

  • Davanture M et al (2014) Phosphoproteome profiles of the phytopathogenic fungi Alternaria brassicicola and Botrytis cinerea during exponential growth in axenic cultures. Proteomics 14:1639–1645

    Article  CAS  PubMed  Google Scholar 

  • Dean R et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  Google Scholar 

  • Dekkers BJW et al (2012) Identification of reference genes for RT-qPCR expression. Plant Cell Physiol 53:28–37

    Article  CAS  PubMed  Google Scholar 

  • d’Enfert C, Bonini BM, Zapella PD, Fontaine T, da Silva AM, Terenzi HF (1999) Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol 32:471–483

    Article  PubMed  Google Scholar 

  • Dulermo T, Rascle C, Billonâ Grand G, Gout E, Bligny R, Cotton P (2010) Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea. Biochem J 427:323–332

    Article  CAS  PubMed  Google Scholar 

  • Elad Y, Williamson B, Tudzynski P, Delen N (2004) Botrytis: biology, pathology and control. Springer, Dordrecht

    Google Scholar 

  • El-Akhal MR, Colby T, Cantoral JM, Harzen A, Schmidt J, Fernandez-Acero FJ (2013) Proteomic analysis of conidia germination in Colletotrichum acutatum. Arch Microbiol 195:227–246

    Article  CAS  PubMed  Google Scholar 

  • Espino JJ, Gutiérrez-Sánchez G, Brito N, Shah P, Orlando R, González C (2010) The Botrytis cinerea early secretome. Proteomics 10:3020–3034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez-Acero FJ et al (2006) Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics 6:S88–S96

    Article  PubMed  Google Scholar 

  • Fernandez-Acero FJ, Colby T, Harzen A, Cantoral JM, Schmidt J (2009) Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation. Proteomics 9:2892–2902

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Acero FJ et al (2006) Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics 6:S88–S96

    Article  PubMed  Google Scholar 

  • Fernández-Acero FJ et al (2007) Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Arch Microbiol 187:207–215

    Article  PubMed  Google Scholar 

  • Fernández-Acero FJ et al (2010) 2-DE proteomic approach to the Botrytis cinerea secretome induced with different carbon sources and plant-based elicitors. Proteomics 10:2270–2280

    Article  PubMed  Google Scholar 

  • Fillinger S, Chaveroche M-K, Shimizu K, Keller N, d’Enfert C (2002) cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol 44:1001–1016

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Cantoral JM, Carbú M, González-Rodríguez VE, Fernández-Acero FJ (2010) New proteomic approaches to plant pathogenic fungi. Curr Proteomics 2011:306–315

    Article  Google Scholar 

  • Gil-Salas FM et al (2007) Development of real-time RT-PCR assays for the detection of Cucumber vein yellowing virus (CVYV) and Cucurbit yellow stunting disorder virus (CYSDV) in the whitefly vector Bemisia tabaci. J Virol Methods 146:45–51

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Fernandez R, Jorrin-Novo JV (2012) Contribution of proteomics to the study of plant pathogenic fungi. J Proteome Res 11:3–16

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Fernandez R, Aloria K, Valero-Galvan J, Redondo I, Arizmendi JM, Jorrin-Novo J (2013) Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. J Proteomics 97:195–221

    Article  PubMed  Google Scholar 

  • Gronover CS, Kasulke D, Tudzynski P, Tudzynski B (2001) The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact 14:1293–1302

    Article  CAS  PubMed  Google Scholar 

  • Hack CJ (2004) Integrated transcriptome and proteome data: the challenges ahead. Brief Funct Genomics Proteomics 3:212–219

    Article  CAS  Google Scholar 

  • Hagag S, Kubitschek-Barreira P, Neves GWP, Amar D, Nierman W et al (2012) Transcriptional and proteomic analysis of the Aspergillus fumigatus ΔprtT protease-deficient mutant. PLoS One 7(4):e33604. doi:10.1371/journal.pone.0033604

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Hope WW, Tabernero L, Denning DW, Anderson MJ (2004) Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother 48:4377–4386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horikoshi K, Iida S, Ikeda Y (1965) Mannitol and mannitol dehydrogenases in conidia of Aspergillus oryzae. J Bacteriol 89:326–330

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lafon A, Seo J-A, Han K-H, Yu J-H, d’Enfert C (2005) The heterotrimeric G-protein GanB(alpha)-SfaD(beta)-GpgA(gamma) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics 171:71–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lafon A, Han K-H, Seo J-A, Yu J-H, d’Enfert C (2006) G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genet Biol 43:490–502

    Article  CAS  PubMed  Google Scholar 

  • Leroch M et al (2013) Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage. Eukaryot Cell 12:614–626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Wang W, Zong Y, Qin G, Tian S (2012) Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. J Proteome Res 11:4249–4260

    Article  CAS  PubMed  Google Scholar 

  • Maddi A, Bowman SM, Free SJ (2009) Trifluoromethanesulfonic acid-based proteomic analysis of cell wall and secreted proteins of the ascomycetous fungi Neurospora crassa and Candida albicans. Fungal Genet Biol 46:768–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mamarabadi M, Jensen B, Jensen DF, Lubeck M (2008) Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinerea and strawberry. FEMS Microbiol Lett 285:101–110

    Article  CAS  PubMed  Google Scholar 

  • McCarthy FM et al (2006) AgBase: a functional genomics resource for agriculture. BMC Genomics 7:229

    Article  PubMed Central  PubMed  Google Scholar 

  • Noir S, Colby T, Harzen A, Schmidt J, Panstruga R (2009) A proteomic analysis of powdery mildew (Blumeria graminis f.sp. hordei) conidiospores. Mol Plant Pathol 10:223–236

    Article  CAS  PubMed  Google Scholar 

  • Oh YT, Ahn C-S, Kim JG, Ro H-S, Lee C-W, Kim JW (2010) Proteomic analysis of early phase of conidia germination in Aspergillus nidulans. Fungal Genet Biol 47:246–253

    Article  CAS  PubMed  Google Scholar 

  • Oh Y et al (2012) Polyubiquitin is required for growth, development and pathogenicity in the rice blast fungus Magnaporthe oryzae. PLoS One 7:e42868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osherov N, May G (2001) The molecular mechanisms of conidial germination. FEMS Microbiol Lett 199:153–160

    Article  CAS  PubMed  Google Scholar 

  • Rossignol T, Kobi D, Jacquet-Gutfreund L, Blondin B (2009) The proteome of a wine yeast strain during fermentation, correlation with the transcriptome. J Appl Microbiol 107:47–55

    Article  CAS  PubMed  Google Scholar 

  • Rui O, Hahn M (2007) The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Microbiology 153:2791–2802

    Article  CAS  PubMed  Google Scholar 

  • Ruijter GJG et al (2003) Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryot Cell 2:690–698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schumacher J, Tudzynski P (2012) Morphogenesis and infection in Botrytis cinerea In: Pérez-Martín J, Di Pietro A (eds) Morphogenesis and pathogenicity in fungi. Topics in current genetics. Springer, Berlin, Heidelberg, pp 225–241

  • Shah P, Atwood JA, Orlando R, El Mubarek H, Podila GK, Davis MR (2009a) Comparative proteomic analysis of Botrytis cinerea secretome. J Proteome Res 8:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Gutierrez-Sanchez G, Orlando R, Bergmann C (2009b) A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Proteomics 9:3126–3135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staats M, Van Kan J (2012) Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryot cell 11:1413–1414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taubitz A, Bauer B, Heesemann J, Ebel F (2007) Role of respiration in the germination process of the pathogenic mold Aspergillus fumigatus. Curr Microbiol 54:354–360

    Article  CAS  PubMed  Google Scholar 

  • Temme N, Tudzynski P (2009) Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of botrytis activator protein 1. Mol Plant Microbe Interact 22:987–998

    Article  CAS  PubMed  Google Scholar 

  • Tsai HF, Washburn RG, Chang YC, Kwon-Chung KJ (1997) Aspergillus fumigatus arp1 modulates conidial pigmentation and complement deposition. Mol Microbiol 26:175–183

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski P, Kokkelink L (2009) Botrytis cinerea: molecular aspects of a necrotrophic life style. In: Deising HB (ed) The mycota. Springer, Berlin, pp 29–50

    Chapter  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen MR, Krijgsheld P, Bleichrodt R, Menke H, Stam H, Stark J, Wösten HAB, Dijksterhuis J (2013) Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles. Stud Mycol 74:59–70

  • Viaud M, Brunet-Simon A, Brygoo Y, Pradier J-M, Levis C (2003) Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Mol Microbiol 50:1451–1465

    Article  CAS  PubMed  Google Scholar 

  • Villela A et al. (2013) Biochemical Characterization of Uracil Phosphoribosyltransferase from Mycobacterium tuberculosis. PLoS ONE 8:doi:10.1371/journal.pone.0056445

  • Wartenberg D et al (2012) Proteome analysis of the farnesol-induced stress response in Aspergillus nidulans—the role of a putative dehydrin. J Proteomics 75:4038–4049

    Article  CAS  PubMed  Google Scholar 

  • Yao YA et al (2012) Proteomic analysis of Mn-induced resistance to powdery mildew in grapevine. J Exp Bot 63:5155–5170

    Article  CAS  PubMed  Google Scholar 

  • Zheng C et al (2011) LongSAGE gene-expression profiling of Botrytis cinerea germination suppressed by resveratrol, the major grapevine phytoalexin. Fungal Biol 115:815–832

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Prof. Dr. Tudzynski for donated the strain B. cinerea B05.10 used in this study. This research has been financed by the Spanish Government DGICYT—AGL2009-13359-CO2/AGR and AGL2012-39798-C02-02 (www.micinn.es/portal/site/MICINN/), by the Andalusian Government (Junta de Andalucía, PO7-FQM-002689; www.juntadeandalucia.es/innovacioncienciayempresa), and by the CeiA3 International Campus of excellence in Agrifood (18INACO177.002AA; http://www.uco.es/cei-A3/). Victoria E. González-Rodríguez was supported by the grant FPU of the Ministerio de Educación, Government of Spain (AP2009-1309). Eva Liñeiro was supported by a FPI grant from the University of Cadiz (2010-152).

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Fernández-Acero.

Additional information

Communicated by Erko Stackebrandt.

Victoria E. González-Rodríguez and Eva Liñeiro have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3804 kb)

Supplementary material 2 (XLS 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Rodríguez, V.E., Liñeiro, E., Colby, T. et al. Proteomic profiling of Botrytis cinerea conidial germination. Arch Microbiol 197, 117–133 (2015). https://doi.org/10.1007/s00203-014-1029-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1029-4

Keywords

Navigation