Skip to main content

Advertisement

Log in

Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Escherichia coli was used as a microbial system for the heterologous synthesis of β-phellandrene, a monoterpene of plant origin with several potential commercial applications. Expression of Lavandula angustifolia β-phellandrene synthase (PHLS), alone or in combination with Picea abies geranyl-diphosphate synthase in E. coli, resulted in no β-phellandrene accumulation, in sharp contrast to observations with PHLS-transformed cyanobacteria. Lack of β-phellandrene biosynthesis in E. coli was attributed to the limited endogenous carbon partitioning through the native 2-C-methylerythritol-4-phosphate (MEP) pathway. Heterologous co-expression of the mevalonic acid pathway, enhancing cellular carbon partitioning and flux toward the universal isoprenoid precursors, isopentenyl-diphosphate and dimethylallyl-diphosphate, was required to confer β-phellandrene production. Differences in endogenous carbon flux toward the synthesis of isoprenoids between photosynthetic (Synechocystis) and non-photosynthetic bacteria (E. coli) are discussed in terms of differences in the regulation of carbon partitioning through the MEP biosynthetic pathway in the two systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DCW:

Dry cell weight

DMAPP:

Dimethylallyl-diphosphate

GPPS:

Geranyl-diphosphate synthase

IPP:

Isopentenyl-diphosphate

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

MEP:

2-C-methyl-erythritol-4-phosphate

MVA:

Mevalonic acid

OD:

Optical density

β-PHL:

β-Phellandrene

PHLS:

β-Phellandrene synthase

TIR:

Translation initiation region

References

  • Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Wu Y, Banerjee R, Li Y, Yan H, Sharkey TD (2013) Feedback inhibition of deoxy-D-xylulose 5-phosphate synthase regulates the methyl erythritol 4-phosphate pathway. J Biol Chem 288:16926–16936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bentley FK, García-Cerdán JG, Chen H, Melis A (2013) Paradigm of monoterpene (β-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria. Bioenerg Res 6:917–929

    Article  CAS  Google Scholar 

  • Bohlmann J, Phillips M, Ramachandiran V, Katoh S, Croteau R (1999) cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch Biochem Biophys 368:232–243

    Article  CAS  PubMed  Google Scholar 

  • Bouhss A, Trunkfield AE, Bugg TD, Mengin-Lecreulx D (2008) The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32(2):208–233

    Article  CAS  PubMed  Google Scholar 

  • Carter OA, Peters RJ, Croteau R (2003) Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry 64:425–433

    Article  CAS  PubMed  Google Scholar 

  • Demissie ZA, Sarker LS, Mahmoud SS (2011) Cloning and functional characterization of β-phellandrene synthase from Lavandula angustifolia. Planta 233:685–696

    Article  CAS  PubMed  Google Scholar 

  • Dumelin CE, Chen Y, Leconte AM, Chen YG, Liu DR (2012) Discovery and biological characterization of geranylated RNA in bacteria. Nat Chem Biol 8:913–919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487

    Article  PubMed Central  PubMed  Google Scholar 

  • Englund E, Pattanaik B, Ubhayasekera SJ, Stensjö K, Bergquist J, Lindberg P (2014) Production of squalene in Synechocystis sp. PCC 6803. PLoS ONE 9(3):e90270. doi:10.1371/journal.pone.0090270

    Article  PubMed Central  PubMed  Google Scholar 

  • Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17:57–61

    Article  CAS  PubMed  Google Scholar 

  • Fischer MJC, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng 108:1883–1892

    Article  CAS  PubMed  Google Scholar 

  • Formighieri C, Melis A (2014) Regulation of β-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta. doi:10.1007/s00425-014-2080-8

    PubMed  Google Scholar 

  • Kim SW, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72:408–415

    Article  CAS  PubMed  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    Article  CAS  PubMed  Google Scholar 

  • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  PubMed  Google Scholar 

  • Martin DM, Chiang A, Lund ST, Bohlmann J (2012) Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta 236:919–929

    Article  CAS  PubMed  Google Scholar 

  • Matthews PD, Wurtzel ET (2000) Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl Microbiol Biotechnol 53:396–400

    Article  CAS  PubMed  Google Scholar 

  • Melis A (2012) Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, and botryococcene production. Energy Environ Sci 5(2):5531–5539

    Article  CAS  Google Scholar 

  • Melis A (2013) Carbon partitioning in photosynthesis. Curr Opin Chem Biol 17:453–456

    Article  CAS  PubMed  Google Scholar 

  • Sarria S, Wong B, Martin HG, Keasling JD, Peralta-Yahya P (2014) Microbial synthesis of pinene. ACS Synth Biol. doi:10.1021/sb4001382

    PubMed  Google Scholar 

  • Schilmiller AL, Schauvinhold I, Larson M, Xu R, Charbonneau AL, Schmidt A, Wilkerson C, Last RL, Pichersky E (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Nat Acad Sci USA 106:10865–10870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt A, Gershenzon J (2008) Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry 69:49–57

    Article  CAS  PubMed  Google Scholar 

  • Vadali RV, Fu Y, Bennett GN, San KY (2005) Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol Prog 21:1558–1561

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J Biotechnol 140:218–226

    Article  CAS  PubMed  Google Scholar 

  • Zerbe P, Bohlmann J (2014) Bioproducts, biofuels, and perfumes: conifer terpene synthases and their potential for metabolic engineering. In: Jetter R (ed) Phytochemicals–biosynthesis, function and application. Springer, Berlin, pp 85–107

    Chapter  Google Scholar 

  • Zhang H, Liu Q, Cao Y, Feng X, Zheng Y, Zou H, Liu H, Yang J, Xian M (2014) Microbial production of sabinene — a new terpene-based precursor of advanced biofuel. Microb Cell Fact 13:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Zurbriggen A, Kirst H, Melis A (2012) Isoprene production via the mevalonic acid pathway in Escherichia coli (bacteria). Bioenerg Res 5:814–828

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Melis.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formighieri, C., Melis, A. Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures. Arch Microbiol 196, 853–861 (2014). https://doi.org/10.1007/s00203-014-1024-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1024-9

Keywords

Navigation