Skip to main content
Log in

Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, aerobic, rod-shaped, motile by gliding and yellow-pigmented bacterium, designated strain 10Alg 130T, that displayed the ability to destroy polysaccharides of red and brown algae, was isolated from the red alga Ahnfeltia tobuchiensis. The phylogenetic analysis based on 16S rRNA gene sequence placed the novel strain within the genus Flavobacterium, the type genus of the family Flavobacteriaceae, the phylum Bacteroidetes, with sequence similarities of 96.2 and 95.7 % to Flavobacterium jumunjiense KCTC 23618T and Flavobacterium ponti CCUG 58402T, and 95.3–92.5 % to other recognized Flavobacterium species. The prevalent fatty acids of strain 10Alg 130T were iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C15:0 and iso-C17:1ω9c. The polar lipid profile consisted of phosphatidylethanolamine, two unknown aminolipids and three unknown lipids. The DNA G+C content of the type strain was 34.3 mol%. The new isolate and the type strains of recognized species of the genus Flavobacterium could strongly be distinguished by a number of phenotypic characteristics. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ahnfeltiae sp. nov. is proposed. The type strain is 10Alg 130T (=KCTC 32467T = KMM 6686T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Bakunina I, Nedashkovskaya OI, Balabanova LA, Zvyagintseva TN, Rasskazov VA, Mikhailov VV (2013) Comparative analysis of glycoside hydrolases activities from phylogenetically diverse marine bacteria of the genus Arenibacter. Mar Drugs 11:1977–1998

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, Würdemann CA, Quast C, Kuhl H, Knaust F, Wöbken D, Bischof K, Mussmann M, Choudhuri JV, Meyer F, Reinhardt R, Amann RI, Glöckner FO (2006) Genome adaptations of the marine Bacteroidetes ‘Gramella forsetii’ for polymeric organic matter degradation. Environ Microbiol 8:2201–2213

    Article  PubMed  CAS  Google Scholar 

  • Bernardet J-F, Bowman JP (2011) Genus I. Flavobacterium Bergey et al. 1923. In: Whitman W (ed) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. The Williams & Wilkins Co., Baltimore, pp 112–154

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Collins MD, Shah HM (1984) Fatty acid, menaquinone and polar lipid composition of Rothia dentosacariosa. Arch Microbiol 137:247–249

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fernandez N, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2012) Community structure and functional gene profile of bacteria on healthy and diseased thalli of the red seaweed Delisea pulchra. PLoS ONE 7:e50854

    Article  Google Scholar 

  • Fu Y, Tang X, Lai Q, Zhang C, Zhong H, Li W, Liu Y, Chen L, Sun F, Shao Z (2011) Flavobacterium beibuense sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 61:205–209

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington

    Google Scholar 

  • Gonzalez JM, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773

    Article  PubMed  CAS  Google Scholar 

  • Humphry DR, George A, Black GW, Cummings SP (2001) Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243

    PubMed  CAS  Google Scholar 

  • Joung Y, Kim H, Joh K (2013) Flavobacterium jumunjinense sp. nov., isolated from a lagoon, and emended descriptions of Flavobacterium cheniae, Flavobacterium dongtanense and Flavobacterium gelidilacus. Int J Syst Evol Microbiol 63:3937–3943

    Article  PubMed  CAS  Google Scholar 

  • Kaur I, Kaur C, Khan F, Mayilraj S (2012) Flavobacterium rakeshii sp. nov., isolated from marine sediment, and emended description of Flavobacterium beibuense Fu et al. 2011. Int J Syst Evol Microbiol 62:2897–2902

    Article  PubMed  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University, Cambridge

    Book  Google Scholar 

  • Komagata K, Suzuki K-I (1987) Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  • Kusaykin MI, Bakunina IY, Sova VV, Ermakova SP, Kuznetsova TS, Besednova NN, Zaporozhets TS, Zvyagintseva TN (2008) Structure and biological action of the polysaccharides and products of their transformation. J Biotechnol 3:904–915

    Article  CAS  Google Scholar 

  • Lemos ML, Toranzo AE, Barja JL (1985) Modified medium for oxidation–fermentation test in the identification of marine bacteria. Appl Environ Microbiol 40:1541–1543

    Google Scholar 

  • Mann AJ, Hahnke RL, Huang S, Werner J, Xing P, Barbeyron T, Huettel B, Stüber K, Reinhardt R, Harder J, Glöckner FO, Amann RI, Teeling H (2013) The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol 79:6813–6822

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McCammon SA, Bowman JP (2000) Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov. and Flavobacterium xanthum sp. nov., nom. rev., and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 50:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Miranda LN, Hutchison K, Grossman A, Brawley SH (2013) Diversity and abundance of the bacterial community of the red macroalga Porphyra umbilicalis. Did bacterial farmers produce macroalgae? PLoS ONE 8:e58269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N, Nakagawa T, Nakagawa J (2010) Flavobacterium algicola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 60:344–348

    Article  PubMed  CAS  Google Scholar 

  • Nelson TE (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–381

    CAS  Google Scholar 

  • Nogi Y, Soda K, Oikawa T (2005) Flavobacterium frigidimaris sp. nov., isolated from Antarctic seawater. Syst Appl Microbiol 28:310–315

    Article  PubMed  CAS  Google Scholar 

  • Nupur Bhumika V, Srinivas TN, Kumar PA (2013) Flavobacterium nitratireducens sp. nov., an amylolytic bacterium of the family Flavobacteriaceae isolated from coastal surface seawater. Int J Syst Evol Microbiol 63:2490–2496

    Article  CAS  Google Scholar 

  • Nylund GM, Persson F, Lindegarth M, Cervin G, HermanssonM Pavia H (2010) The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defence. FEMS Ecol 71:84–93

    Article  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16

    Google Scholar 

  • Song GL, Liu H, Huang Y, Dai X, Zhou Y (2013) Flavobacterium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63:3551–3555

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Trappen S, Mergaert J, Swings J (2003) Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 53:1241–1245

    Article  PubMed  Google Scholar 

  • Vela AI, Fernandez A, Sánchez-Porro C, Sierra E, Mendez M, Arbelo M, Ventosa A, Dominguez L, Fernandez-Garayzabal JF (2007) Flavobacterium ceti sp. nov., isolated from beaked whales (Ziphius cavirostris). Int J Syst Evol Microbiol 57:2604–2608

    Article  PubMed  CAS  Google Scholar 

  • Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, Cavicchioli R (2013) The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol 15:1302–1317

    Article  PubMed  CAS  Google Scholar 

  • Xiao YP, Hui W, Lee JS, Lee KC, Quan ZX (2011) Flavobacterium dongtanense sp. nov., isolated from the rhizosphere of a wetland reed. Int J Syst Evol Microbiol 61:343–346

    Article  PubMed  CAS  Google Scholar 

  • Yoon JH, Park S, Kang SJ, Oh SJ, Myung SC, Kim W (2011) Flavobacterium ponti sp. nov., isolated from seawater. Int J Syst Evol Microbiol 61:81–85

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Jiang RB, Zhang XX, Hang BJ, He J, Li SP (2010) Flavobacterium haoranii sp. nov., a cypermethrin-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 60:2882–2886

    Article  PubMed  CAS  Google Scholar 

  • Zvyagintseva TN, Shevchenko NM, Chizhov AO, Krupnova TN, Sundukova EV, Isakov VV (2003) Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J Exp Mar Biol Ecol 294:1–13

    Article  CAS  Google Scholar 

  • Zvyagintseva TN, Shevchenko NM, Nazarenko EL, Gorbach VI, Urvantseva AM, Kiseleva MI, Isakov VV (2005) Water-soluble polysaccharides of some brown algae of the Russian Far-East. Structure and biological action of low-molecular mass polyuronans. J Exp Mar Biol Ecol 320:123–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jung-Sook Lee (Daejeon, Republic of Korea) for providing us with the type strains F. jumunjiense KCTC 23618T and F. dongtanense KCTC 22671T, and Professor Edward R.B. We thank Moore (Göteborg, Sweden) for providing us with the type strain F. ponti CCUG 58402T. This research was supported by grants of the Presidium of the Russian Academy of Sciences “Molecular and Cell Biology” and the Presidium of the Far-Eastern Branch of the Russian Academy of Sciences no. 12-III-A-06-106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga I. Nedashkovskaya.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 105 kb)

203_2014_1010_MOESM2_ESM.ppt

Maximum likelihood phylogenetic tree based on 16S rRNA gene sequences showing the phylogenetic position of F. ahnfeltiae sp. nov. 10Alg 130T and related members of the family Flavobacteriaceae. Bootstrap values are based on 1,000 replications. Bar, 0.01 substitutions per nucleotide position. (PPT 92 kb)

203_2014_1010_MOESM3_ESM.ppt

Minimum evolution phylogenetic tree based on 16S rRNA gene sequences showing the phylogenetic position of F. ahnfeltiae sp. nov. 10Alg 130T and related members of the family Flavobacteriaceae. Bootstrap values are based on 1,000 replications. Bar, 0.01 substitutions per nucleotide position. (PPT 92 kb)

203_2014_1010_MOESM4_ESM.pdf

Polar lipid profiles of strain 10Alg 130T (a), Flavobacterium dokdonense LW30T (b), F. jumunjinense HME7102T (c) and F. ponti GSW-R14T (d) after separation by two-dimensional thin-layer chromatography. PE, phosphatidylethanolamine; AL 1-3, unidentified aminolipids; L 1-5, unknown lipids. (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedashkovskaya, O.I., Balabanova, L.A., Zhukova, N.V. et al. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga. Arch Microbiol 196, 745–752 (2014). https://doi.org/10.1007/s00203-014-1010-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1010-2

Keywords

Navigation