Skip to main content
Log in

Isolation and characterization of a new Bacillus thuringiensis strain Lip harboring a new cry1Aa gene highly toxic to Ephestia kuehniella (Lepidoptera: Pyralidae) larvae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize new Bacillus thuringiensis strains that have a potent insecticidal activity against Ephestia kuehniella larvae. Strains harboring cry1A genes were tested for their toxicity, and the Lip strain showed a higher insecticidal activity compared to that of the reference strain HD1 (LC50 of Lip and HD1 were 33.27 and 128.61 μg toxin/g semolina, respectively). B. thuringiensis Lip harbors and expresses cry1Aa, cry1Ab, cry1Ac, cry1Ad and cry2A. DNA sequencing revealed several polymorphisms in Lip Cry1Aa and Cry1Ac compared to the corresponding proteins of HD1. The activation process using Ephestia kuehniella midgut juice showed that Lip Cry1A proteins were more stable in the presence of larval proteases. Moreover, LipCry1A proteins exhibited higher insecticidal activity against these larvae. These results indicate that Lip is an interesting strain that could be used as an alternative to the worldwide used strain HD1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bertani G (1951) A method for detection of mutations, using streptomycin dependence in Escherichia coli. Genetics 36:598–611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carmona D, Rodríguez-Almázan C, Munoz-Garay C, Portugal L, Pérez C, de Maagd RA, Bakker P, Soberón M, Bravo A (2011) Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different Cry toxins. PLoS ONE 6:e19952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carozzi NB, Kramer VC, Warren GW, Evola S, Koziel MG (1991) Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl Environ Microbiol 57:3057–3061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng P, Wu L, Ziniu Y, Aronson A (1999) Subspecies-dependent regulation of Bacillus thuringiensis protoxin genes. Appl Environ Microbiol 65:1849–1853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Congdon RW, Muth GW, Splittgerber AG (1993) The binding interaction of Coomassie blue with proteins. Anal Biochem 213:407–413

    Article  CAS  PubMed  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dardenne F, Seurinck J, Lambert B, Peferoen M (1990) Nucleotide sequence and deduced amino acid sequence of a cryIA(c) gene variant from Bacillus thuringiensis. Nucleic Acids Res 18:5546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faust RM, Hallam GM, Travers RS (1974) Degradation of the parasporal crystal produced by Bacillus thuringiensis var. kurstaki. J Invertebr Pathol 24:365–373

    Article  CAS  PubMed  Google Scholar 

  • Geiser M, Schweitzer S, Grimm C (1986) The hypervariable region in the genes coding for entomopathogenic crystal proteins of Bacillus thuringiensis: nucleotide sequence of the kurhd1 gene of subsp. kurstaki HD1. Gene 48:109–118

    Article  CAS  PubMed  Google Scholar 

  • Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R, Cygler M (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol 254:447–464

    Article  CAS  PubMed  Google Scholar 

  • Hire RS, Makde RD, Dongre TK, D’Souza SF (2008) Characterization of the cry1Ac17 gene from an indigenous strain of Bacillus thuringiensis subsp. kenyae. Curr Microbiol 57:570–574

    Article  CAS  PubMed  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed Central  PubMed  Google Scholar 

  • Ibrahim MA, Griko N, Junker M, Bulla LA (2010) Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng Bugs 1:31–50

    Article  PubMed Central  PubMed  Google Scholar 

  • Jaoua S, Zouari N, Tounsi S, Ellouz R (1996) Study of the delta-endotoxins produced by three recently isolated strains of Bacillus thuringiensis. FEMS Microbiol Lett 145:349–354

    CAS  Google Scholar 

  • Kato T, Higuchi M, Endo R, Maruyama T, Haginoya K, Shitomi Y, Hayakawa T, Mitsuia T, Sato R, Hori H (2006) Bacillus thuringiensis Cry1Ab, but not Cry1Aa or Cry1Ac, disrupts liposomes. Pestic Biochem Phys 84:1–9

    Article  CAS  Google Scholar 

  • Kumar AS, Aronson AI (1999) Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis delta-endotoxin. J Bacteriol 181:6103–6107

    CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lecadet MM, Frachon E, Dumanoir VC, Ripouteau H, Hamon S, Laurent P, Thiery I (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 86:660–672

    Article  CAS  PubMed  Google Scholar 

  • Li JD, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353:815–821

    Article  CAS  PubMed  Google Scholar 

  • Martínez C, Caballero P (2002) Contents of cry genes and insecticidal toxicity of Bacillus thuringiensis strains from terrestrial and aquatic habitats. Appl Microbiol 92:745–752

    Article  Google Scholar 

  • Masson L, Lu YJ, Mazza A, Brousseau R, Adang MJ (1995) The CryIA(c) receptor purified from Manduca sexta displays multiple specificities. J Biol Chem 270:20309–20315

    Article  CAS  PubMed  Google Scholar 

  • Masson L, Tabashnik BE, Liu YB, Brousseau R, Schwartz JL (1999) Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. J Biol Chem 274:31996–32000

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Frisch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Article  CAS  PubMed  Google Scholar 

  • Sauka DH, Amadio AF, Zandomeni RO, Benintende GB (2007) Strategy for amplification and sequencing of insecticidal cry1A genes from Bacillus thuringiensis. Antonie Van Leeuwenhoek 91:423–430

    Article  CAS  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz JL, Juteau M, Grochulski P, Cygler M, Préfontaine G, Brousseau R, Masson L (1997) Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett 410:397–402

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Jensen ON, Podtelejnikov AV, Neubauer G, Mortensen P, Mann M (1996) A strategy for identifying gel-separated proteins in sequence databases by MS alone. Biochem Soc Trans 24:893–896

    CAS  PubMed  Google Scholar 

  • Shin BS, Park SH, Choi SK, Koo BT, Lee ST, Kim JI (1995) Distribution of cryV-type insecticidal protein genes in Bacillus thuringiensis and cloning of cryV-type genes from Bacillus thuringiensis subsp. kurstaki and Bacillus thuringiensis subsp. Entomocidus. Appl Environ Microbiol 61:402–407

    Google Scholar 

  • Theunis W, Aguda RM, Cruz WT, Decock C, Peferoen M, Lambert B, Bottrell DG, Gould FL, Litsinger JA, Cohen MB (1998) Bacillus thuringiensis isolates from the Philippines: habitat distribution, δ-endotoxin diversity, and toxicity to rice stem borers Lepidoptera: Pyralidae. Bull Entomol Res 88:335–342

    Article  CAS  Google Scholar 

  • Tigue NJ, Jacoby J, Ellar DJ (2001) The alpha-helix 4 residue, Asn135, is involved in the oligomerization of Cry1Ac1 and Cry1Ab5 Bacillus thuringiensis toxins. Appl Environ Microbiol 67:5715–5720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tounsi S, JMal A, Zouari N, Jaoua S (1999) Cloning and nucleotide sequence of a novel cry1Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnol Lett 21:771–775

    Article  CAS  Google Scholar 

  • Tounsi S, Zouari N, Jaoua S (2003) Cloning and study of the expression of a novel cry1Ia-type gene from Bacillus thuringiensis subsp. kurstaki. J Appl Microbiol 95:23–28

    Article  CAS  PubMed  Google Scholar 

  • Tounsi S, Dammak M, Rebaî A, Jaoua S (2005) Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins and toxin mixtures. Biol Control 35:27–31

    Article  CAS  Google Scholar 

  • Tounsi S, Aoun AE, Blight M, Rebai A, Jaoua S (2006) Evidence of oral toxicity of Photorhabdus temperata strain K122 against Prays oleae and its improvement by heterologous expression of Bacillus thuringiensis cry1Aa and cry1Ia genes. J Invertebr Pathol 91:131–135

    Article  CAS  PubMed  Google Scholar 

  • Travers RS, Martin PA, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus spp. Appl Environ Microbiol 53:1263–1266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vachon V, Préfontaine G, Rang C, Coux F, Juteau M, Schwartz JL, Brousseau R, Frutos R, Laprade R, Masson L (2004) Helix 4 mutants of the Bacillus thuringiensis insecticidal toxin Cry1Aa display altered pore-forming abilities. Appl Environ Microbiol 70:6123–6130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu D, Aronson AI (1992) Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity. J Biol Chem 267:2311–2317

    CAS  PubMed  Google Scholar 

  • Xiang WF, Qiu XL, Zhi DX, Min ZX, Yuan L, Quan YZ (2009) N546 in beta18–beta19 loop is important for binding and toxicity of the Bacillus thuringiensis Cry1Ac toxin. J Invertebr Pathol 101:119–123

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Xia L, Ding X, Huang F, Li H, Sun Y, Yin J (2010) Influence of mutagenesis of Bacillus thuringiensis Cry1Aa toxin on larvicidal activity. Curr Microbiol 62:968–973

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Lebanese National Council for Scientific Research (01-11-05), the “Agence Universitaire de la Francophonie” AUF (BMO) (PCSI fellow 2012–2013) and the research council of Saint Joseph University, Lebanon (FS32). Micheline El Khoury was funded by grant from AUF and the Lebanese national council for scientific research. We would like to thank Professor Patrick Shultz from the “Institut de génétique et de biologie moléculaire et cellulaire de Strasbourg” for electron microscopy analysis; Mr. Benoît Queffelec for the in vivo data analysis; Dr Vincent Sanchis from INRA, La minière, Paris and Dr Slim Tounsi from the Center of Biotechnology of Sfax, Tunisia for the manuscript revision; Ms. Souad Rouis and Ms. Nour Mouawad (Saint Joseph University, Lebanon) for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireille Kallassy Awad.

Additional information

Communicated by Shuang-Jiang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Khoury, M., Azzouz, H., Chavanieu, A. et al. Isolation and characterization of a new Bacillus thuringiensis strain Lip harboring a new cry1Aa gene highly toxic to Ephestia kuehniella (Lepidoptera: Pyralidae) larvae. Arch Microbiol 196, 435–444 (2014). https://doi.org/10.1007/s00203-014-0981-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-0981-3

Keywords

Navigation