Skip to main content
Log in

Characterization and functional analyses of the chitinase-encoding genes in the nematode-trapping fungus Arthrobotrys oligospora

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Nematode-trapping fungi can secrete many extracellular hydrolytic enzymes such as serine proteases and chitinases to digest and penetrate nematode/egg-cuticles. However, little is known about the structure and function of chitinases in these fungi. In this study, 16 ORFs encoding putative chitinases, which all belong to glycoside hydrolase (GH) family 18, were identified from the Arthrobotrys oligospora genome. Bioinformatics analyses showed that these 16 putative chitinases differ in their functional domains, molecular weights and pI. Phylogenetic analysis grouped these A. oligospora chitinases into four clades: clades I, II, III and IV, respectively, including an A. oligospora-specific subclade (Clade IV-B) that contained high-molecular weight chitinases (≥100 kDa). Transcriptional analysis of A. oligospora chitinases suggested that the expression of most chitinases was repressed by carbon starvation, and all chitinases were up-regulated under nitrogen starvation. However, chitinase AO-190 was up-regulated under carbon and/or nitrogen starvation. Moreover, several chitinases (such as AO-59, AO-190 and AO-801) were up-regulated in the presence of chitinous substrates or a plant pathogenic fungus, indicating that they could play a role in biocontrol applications of A. oligospora. Our results provided a basis for further understanding the functions, diversities and evolutionary relationships between chitinase genes in nematode-trapping fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Åhman J, Johanson T, Olsson M, Punt PJ, van den Hondel CA, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415

    Article  PubMed  Google Scholar 

  • Baek JM, Howell CR, Kenerley CM (1999) The role of an extracellular chitinase from Trichoderma virens Gv29–8 in the biocontrol of Rhizoctonia solani. Curr Genet 35:41–50

    Article  PubMed  CAS  Google Scholar 

  • Barron GL (2003) Predatory fungi, wood decay, and the carbon cycle. Biodiversity 4:3–9

    Article  Google Scholar 

  • Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to (peptido) glycans. Mol Microbiol 68:838–847

    Article  PubMed  CAS  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrateactive enzymes: an integrated database approach. In: Gilbert HJ, Davies GBH, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12

    Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    Article  PubMed  CAS  Google Scholar 

  • Dean RA et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  PubMed  CAS  Google Scholar 

  • Dong LQ, Yang JK, Zhang KQ (2007) Cloning and phylogenetic analysis of the chitinase gene from the facultative pathogen Paecilomyces lilacinus. J Appl Microbiol 103:2476–2488

    Article  PubMed  CAS  Google Scholar 

  • Gan ZW, Yang JK, Tao N, Liang LM, Mi QL, Li J, Zhang KQ (2007a) Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Appl Microbiol Biotechnol 76:1309–1317

    Article  PubMed  CAS  Google Scholar 

  • Gan ZW, Yang JK, Tao N, Yu ZF, Zhang KQ (2007b) Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). J Microbiol 45:422–430

    PubMed  CAS  Google Scholar 

  • Gao Q et al (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7:e1001264

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM, Totowa NJ (eds) The proteomics protocols handbook. Humana Press, New York, NY, pp 571–607

    Chapter  Google Scholar 

  • Gruber S, Seidl-Seiboth V (2011) Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology 158:26–34

    Article  PubMed  Google Scholar 

  • Gruber S, Vaaje-Kolstad G, Matarese F, López-Mondéjar R, Kubicek CP, Seidl-Seiboth V (2011a) Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride. Glycobiology 21:122–133

    Article  PubMed  CAS  Google Scholar 

  • Gruber S, Kubicek CP, Seidl-Seiboth V (2011b) Differential regulation of orthologous chitinase genes in mycoparasitic Trichoderma species. Appl Environ Microbiol 77:7217–7226

    Article  PubMed  CAS  Google Scholar 

  • Hartl L, Zach S, Seidl-Seiboth V (2012) Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol 93:533–543

    Article  PubMed  CAS  Google Scholar 

  • Horton P et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  Google Scholar 

  • Kanda S, Aimi T, Kano S, Ishihara S, Kitamoto Y, Morinaga T (2008) Ambient pH signaling regulates expression of the serine protease gene (spr1) in pine wilt nematode-trapping fungus, Monacrosporium megalosporum. Microbiol Res 163:63–72

    Article  PubMed  CAS  Google Scholar 

  • Khan A, Williams KL, Nevalainen HKM (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 31:346–352

    Article  CAS  Google Scholar 

  • Kraulis J et al (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28:7241–7257

    Article  PubMed  CAS  Google Scholar 

  • Li H, Greene LH (2010) Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding. PLoS One 5:e8654

    Article  PubMed  Google Scholar 

  • Li Y, Hyde KD, Jeewon R, Cai L, Vijaykrishna D, Zhang KQ (2005) Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia 97:1034–1046

    Article  PubMed  CAS  Google Scholar 

  • Li J et al (2010) New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evol Biol 10:68

    Article  PubMed  Google Scholar 

  • Limon MC, Margolles-Clark E, Benitez T, Penttila M (2001) Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol Lett 198:57–63

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lorito M, Mach RL, Sposato P, Strauss J, Peterbauer CK, Kubicek CP (1996) Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harzianum. Proc Natl Acad Sci USA 93:14868–14872

    Article  PubMed  CAS  Google Scholar 

  • Mach RL et al (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 5:1858–1863

    Google Scholar 

  • Magliani W, Conti S, Gerloni M, Bertolotti D, Polonelli L (1997) Yeast killer systems. Clin Microbiol Rev 10:369–400

    PubMed  CAS  Google Scholar 

  • Mi QL et al (2010) Cloning and overexpression of Pochonia chlamydosporia chitinase gene pcchi44, a potential virulence factor in infection against nematodes. Process Biochem 45:810–814

    Article  CAS  Google Scholar 

  • Nordbring-Hertz B (2004) Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora—an extensive plasticity of infection structures. Mycologist 18:125–133

    Article  Google Scholar 

  • Nordbring-Hertz B, Jansson HB, Tunlid A (2006) Nematophagous fungi. In: Encyclopedia of life sciences. Wiley, Chichester, pp 1–11

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  • Pusztahelyi T et al (2006) Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans. Folia Microbiol (Praha) 51:547–554

    Article  CAS  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134:169–176

    CAS  Google Scholar 

  • Schirmböck M et al (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    PubMed  Google Scholar 

  • Seidl V (2008) Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42

    Article  Google Scholar 

  • Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939

    Article  PubMed  CAS  Google Scholar 

  • Shin KS, Kwon NJ, Kim YH, Park HS, Kwon GS, Yu JH (2009) Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans. Eukaryot Cell 8:738–746

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson HB (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 35:67–78

    Article  PubMed  CAS  Google Scholar 

  • Tunlid A, Rosen S, Ek B, Rask L (1994) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 140:1687–1695

    Article  PubMed  Google Scholar 

  • Tzelepis GD, Melin P, Jensen DF, Stenlid J, Karlsson M (2012) Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa. Fungal Genet Biol 49:717–730

    Article  PubMed  CAS  Google Scholar 

  • Wright HT, Sandrasegaram G, Wright CS (1991) Evolution of a family of N-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin. J Mol Evol 33:283–294

    Article  PubMed  CAS  Google Scholar 

  • Yang JK, Tian BY, Liang LM, Zhang KQ (2007a) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75:21–31

    Article  PubMed  CAS  Google Scholar 

  • Yang JK et al (2007b) Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes. Appl Microbiol Biotechnol 75:557–565

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yang EC, An ZQ, Liu XZ (2007c) Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc Natl Acad Sci USA 104:8379–8384

    Article  PubMed  CAS  Google Scholar 

  • Yang JK et al (2010) Crystal structure and mutagenesis analysis of chitinase CrChi1 from the nematophagous fungus Clonostachys rosea in complex with the inhibitor caffeine. Microbiology 156:3566–3574

    Article  PubMed  CAS  Google Scholar 

  • Yang JK et al (2011a) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7:e1002179

    Article  PubMed  CAS  Google Scholar 

  • Yang JK et al (2011b) Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paeciliomyces lilacinus. Appl Microbiol Biotechnol 89:1895–1903

    Article  PubMed  CAS  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

  • Zeilinger S et al (1999) Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol 26:131–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Jianping Xu of the Dept. Biology, McMaster University, for valuable comments and critical discussions. The research described here is jointly supported by the National Basic Research Program of China (2013CB127500), the National Natural Science Foundation of China (Approved Nos. 30960229, 31272093 and 31100894), the China National Tobacco Corporation (110201002023), the Department of Science and Technology of Yunnan Province (2009CI052), the West Light Foundation of the Chinese Academy of Sciences (to Jinkui Yang), and the Yunnan Branch of China Tobacco Industrial Corporation (2010yn17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Qin Zhang.

Additional information

Communicated by Erko Stackebrandt.

Jinkui Yang and Yan Yu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Yu, Y., Li, J. et al. Characterization and functional analyses of the chitinase-encoding genes in the nematode-trapping fungus Arthrobotrys oligospora . Arch Microbiol 195, 453–462 (2013). https://doi.org/10.1007/s00203-013-0894-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0894-6

Keywords

Navigation