Skip to main content
Log in

Characterisation of glutamine fructose-6-phosphate amidotransferase (EC 2.6.1.16) and N-acetylglucosamine metabolism in Bifidobacterium

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bifidobacterium bifidum, in contrast to other bifidobacterial species, is auxotrophic for N-acetylglucosamine. Growth experiments revealed assimilation of radiolabelled N-acetylglucosamine in bacterial cell walls and in acetate, an end-product of central metabolism via the bifidobacterial d-fructose-6-phosphate shunt. While supplementation with fructose led to reduced N-acetylglucosamine assimilation via the d-fructose-6-phosphate shunt, no significant difference was observed in levels of radiolabelled N-acetylglucosamine incorporated into cell walls. Considering the central role played by glutamine fructose-6-phosphate transaminase (GlmS) in linking the biosynthetic pathway for N-acetylglucosamine to hexose metabolism, the GlmS of Bifidobacterium was characterized. The genes encoding the putative GlmS of B. longum DSM20219 and B. bifidum DSM20082 were cloned and sequenced. Bioinformatic analyses of the predicted proteins revealed 43% amino acid identity with the Escherichia coli GlmS, with conservation of key amino acids in the catalytic domain. The B. longum GlmS was over-produced as a histidine-tagged fusion protein. The purified C-terminal His-tagged GlmS possessed glutamine fructose-6-phosphate amidotransferase activity as demonstrated by synthesis of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. It also possesses an independent glutaminase activity, converting glutamine to glutamate in the absence of fructose-6-phosphate. This is of interest considering the apparently reduced coding potential in bifidobacteria for enzymes associated with glutamine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Anorve LI, Calcagno ML, Plumbridge J (2005) Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. J Bacteriol 187:2974–2982

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bustos-Jaimes I, Ramirez-Costa M, De Anda-Aguilar L, Hinojosa-Ocanaand P, Calcagno ML (2005) Evidence for two different mechanisms triggering the change in quartenary structure of the allosteric enzyme, glucosamine-6-phosphate isomerase (deaminase) from Escherichia coli. Biochem 44:1127–1135

    Article  CAS  Google Scholar 

  • Calcagno M, Campos PJ, Mulliert G, Suastegui M (1984) Purification, molecular and kinetic properties of glucosamine-6-phosphate isomerase (deaminase) from Escherichia coli. Biochim Biophys Acta 787:165–173

    PubMed  CAS  Google Scholar 

  • Chiang BL, Sheih YH, Wang LH, Liao CK, Gill HS (2000) Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr 54:849–855

    Article  PubMed  CAS  Google Scholar 

  • Derensy-Dron D, Krzewinski F, Brassart C, Bouquelet S (1999) β-1,3-galactosyl-N-acetylhexosamine phosphorylase from Bifidobacterium bifidum DSM 20082: characterization, partial purification and relation to mucin degradation. Biotechnol Appl Biochem 29:3–10

    PubMed  CAS  Google Scholar 

  • Dutka-Malen S, Mazodier P, Badet B (1988) Molecular cloning and overexpression of the glucosamine synthetase from Escherichia coli. Biochimie 70:287–290

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Oura F, Nagamine N, Katayama T, Hiratake J, Sakata K, Kumagai H, Yamamoto K (2005) Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-α-N-acetylgalatosaminidase from B. longum. J Biol Chem 280:37415–37422

    Article  PubMed  CAS  Google Scholar 

  • Good TA, Bessman SP (1964) Determination of glucosamine and galactosamine using borate buffer for modification of the Elson–Morgan and Morgan–Elson reactions. Anal Biochem 9:253–262

    Article  PubMed  CAS  Google Scholar 

  • Gygory P, Kuhn R, Rose CS, Springer GF (1954) Bifidus factor. II. Its occurrence in milk from different species and in other natural products. Arch Biochem Biophys 48:202–208

    Article  Google Scholar 

  • Haarman M, Knol J (2005) Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl Environ Microbiol 71:2318–2324

    Article  PubMed  CAS  Google Scholar 

  • Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendrop AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67

    Article  PubMed  CAS  Google Scholar 

  • Katayama T, Fujita K, Yamamoto K (2005) Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. J Biosci Bioeng 99:457–465

    Article  PubMed  CAS  Google Scholar 

  • Kitaoka M, Tian J, Nishimoto M (2005) Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Appl Environ Microbiol 71:3158–3162

    Article  PubMed  CAS  Google Scholar 

  • Komatsuzawa H, Fujiwara T, Nishi H, Yamada S, Ohara M, McCallum N, Berger-Bächi B, Sugai M (2004) The gate controlling cell wall synthesis in Staphylococcus aureus. Mol Microbiol 53:1221–1231

    Article  PubMed  CAS  Google Scholar 

  • Krzewinski F, Brassart C, Gavini F, Bouquelet S (1997) Glucose and galactose transport in Bifidobacterium bifidum DSM 20082. Curr Microbiol 35:175–179

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of head bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lambert R, Zilliken F (1965) Novel growth factors for Lactobacillus bifidus var pennsylvanicus. Arch Biochem Biophys 110:544–550

    Article  PubMed  CAS  Google Scholar 

  • Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R (2004) Quantitative PCR with 16s rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70:167–173

    Article  PubMed  CAS  Google Scholar 

  • Milewski S (2002) Glucosamine-6-phosphate synthase—the multi-facets enzyme. Biochem Biophys Acta 1597:173–192

    PubMed  CAS  Google Scholar 

  • Olchowy J, Kur K, Sachadyn P, Milewski S (2006) Construction, purification, and functional characterization of His-tagged Candida albicans glucosamine-6-phosphate synthase expressed in Escherichia coli. Protein Expr Purif 46:309–315

    Article  PubMed  CAS  Google Scholar 

  • Ouwehand AC, Isolauri E, He F, Hashimoto H, Benno Y, Salminen S (2001) Differences in Bifidobacterium flora composition in allergic and healthy infants. J Allergy Clin Immunol 18:144–145

    Article  Google Scholar 

  • Ouwehand AC, Isolauri E, Salminen S (2002) The role of intestinal microflora for the development of the immune system in early childhood. Eur J Nutr 41:32–37

    Article  CAS  Google Scholar 

  • Petschow BW, Talbott RD (1991) Response of Bifidobacterium species to growth promoters in human and cow milk. Pediatr Res 29:208–213

    Article  PubMed  CAS  Google Scholar 

  • Plumbridge JA (1995) Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites. EMBO J 14:3958–3965

    PubMed  CAS  Google Scholar 

  • Plumbridge JA, Cochet O, Souza JM, Altamirano MM, Calcagno ML, Badet B (1993) Coordinates regulation of amino sugar-synthesizing and -degrading enzymes in Escherichia coli K-12. J Bacteriol 175:4951–4956

    PubMed  CAS  Google Scholar 

  • Richez C, Boetzel J, Floquet N, Koteshwar K, Stevens J, Badet B, Badet-Denisot M-A (2007) Expression and purification of active human internal His6-tagged l-glutamine:d-Fructose-6P amidotransferase I. Protein Expr Purif 54:45–53

    Article  PubMed  CAS  Google Scholar 

  • Rimington C (1931) Carbohydrate complex of the serum proteins. II. Improved method for isolation and redetermination of glucosaminodiamannose from proteins of ox blood. Biochem J 25:1062–1071

    PubMed  CAS  Google Scholar 

  • Rossi M, Altomare L, Gonzalez Vara y Rodriguez A, Brigidi P, Matteuzzi D (2000) Nucleotide sequence, expression and transcriptional analysis of the Bifidobacterium longum MB 219 lacZ gene. Arch Microbiol 174:74–80

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the gastrointestinal tract. Proc Natl Acad Sci USA 99:14422–14427

    Article  PubMed  CAS  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Article  Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ (1990) Use of T7 RNA polymerase to direct the expression of cloned genes. Methods Enzymol 185:60–89

    Article  PubMed  CAS  Google Scholar 

  • Teplyakov A, Obmolova G, Badet B, Badet-Denisot M-A (2001) Channeling of ammonia in glucosamine-6-phophate synthase. J Mol Biol 313:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Veerkamp JH (1969) Uptake and metabolism of determinatives of 2-deoxy-2-amino-d-glucose in Bifidobacterium bifidum var. pennsylvanicus. Arch Biochem Biophys 129:248–256

    Article  PubMed  CAS  Google Scholar 

  • Vogler AP, Trentmann S, Lengeler JW (1989) Alternative route for biosynthesis of amino sugars in Escherichia coli K-12 mutants of a catabolic isomerase. J Bacteriol 171:6585–6592

    Google Scholar 

  • Weingand-Ziade A, Gerber-Decombaz C, Affolter M (2003) Functional characterization of a salt- and thermotolerant glutaminase from Lactobacillus rhamnosus. Enzyme Microb Technol 32:862–86

    Article  CAS  Google Scholar 

  • Yamashita T, Ashiuchi M, Ohnishi K, Kato S, Nagata S, Misono H (2004) Molecular identification of monomeric aspartate racemase from Bifidobacterium bifidum. Eur J Biochem 271:4798–4803

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Centre National de la Recherche Scientifique (Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS-USTL 8576; Director, Dr Jean Claude Michalski), by the Université des Sciences et Technologies de Lille and by the Region Nord-Pas de Calais (CPER 2000–2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Krzewinski.

Additional information

Communicated by Wolfgang Buckel.

S. Foley and E. Stolarczyk contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, S., Stolarczyk, E., Mouni, F. et al. Characterisation of glutamine fructose-6-phosphate amidotransferase (EC 2.6.1.16) and N-acetylglucosamine metabolism in Bifidobacterium . Arch Microbiol 189, 157–167 (2008). https://doi.org/10.1007/s00203-007-0307-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0307-9

Keywords

Navigation