Skip to main content
Log in

Role of trehalose synthesis pathways in salt tolerance mechanism of Rhodobacter sphaeroides f. sp. denitrificans IL106

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The photosynthetic bacterium Rhodobacter sphaeroides (R. sphaeroides) f. sp. denitrificans IL106 accumulates trehalose as the major organic osmoprotectant in response to a salt stress. An analysis of the R. sphaeroides 2.4.1 genome sequence revealed the presence of five different genes encoding enzymes belonging to three putative trehalose biosynthesis pathways (OtsA-OtsB, TreY-TreZ, and TreS). The function of the different pathways of trehalose was studied by characterizing strains defective in individual trehalose biosynthetic routes. A phenotypic comparison revealed that trehalose synthesis in R. sphaeroides f. sp. denitrificans IL106 is mediated mainly by the OtsA-OtsB pathway and, to some extent, by the TreY-TreZ pathway. Strains with the simultaneous inactivation of these two pathways were completely unable to synthesize trehalose. On the other hand, treS mutants showed an increase in the trehalose level. These results suggest that treS plays a role in trehalose degradation. In addition, treS was found to be important in reducing trehalose after osmotic stress was removed. In this report, we show that the strains that accumulate the most trehalose adapt to salt stress earlier. This is the first report of an organism using multiple pathways to synthesize trehalose solely for use as a compatible solute against salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arguelles JC (1997) Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans. FEMS Microbiol Lett 146:65–71

    Article  PubMed  CAS  Google Scholar 

  • Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, Vanderzee P, Wiemken A (1992) Characterization of the 56-kDa subunit of Yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIFI, a regulator of carbon catabolite inactivation. Eur J Biochem 209:951–959

    Article  PubMed  CAS  Google Scholar 

  • Cabib E, Leloir LF (1958) The biosynthesis of trehalose phosphate. J Biol Chem 231:259–275

    PubMed  CAS  Google Scholar 

  • Crowe LM, Crowe, JH (1988) Dry dipalmitoylphosphatidylcholine and trehalose revisited. Biophys J 53:A127–A127

    Google Scholar 

  • De Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572

    PubMed  Google Scholar 

  • De Smet KAL, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208

    PubMed  Google Scholar 

  • De Virgilio C, Burkert N, Bell W, Jeno P, Wiemken A (1993) Disruption of TP2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Sacccharomyces cereviciae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212:315–323

    Article  PubMed  Google Scholar 

  • Elbein AD (1974) The metabolism of α,α-trehalose. Adv Carbohydr Chem Biochem 30:227–256

    Article  PubMed  CAS  Google Scholar 

  • Han EK, Cotty F, Sottas C, Jiang H, Michels CA (1995) Characterization of AGT1 encoding a general alpha-glucoside transporter from Saccharomyces. Mol Microbiol 17:1093–1107

    Article  PubMed  CAS  Google Scholar 

  • Horlacher R, Xavier KB, Santos H, DiRuggiero J, Kossmann M, Boos W (1998) Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 180:680–689

    PubMed  CAS  Google Scholar 

  • Jensen JB, Peters NK, Bhuvaneswari TV (2002) Redundancy in periplasmic binding protein-dependent transport systems for trehalose, sucrose, and maltose in Sinorhizobium meliloti. J Bacteriol 184:2978–2986

    Article  PubMed  CAS  Google Scholar 

  • Kaasen I, Falkenberg P, Styrvold OB, Strøm AR (1992) Molecular-cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli—evidence that transcription is activated by KATF (APPR). J Bacteriol 174:889–898

    PubMed  CAS  Google Scholar 

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: response to nutrient limitation. J Bacteriol 143:1384–1394

    PubMed  CAS  Google Scholar 

  • Maruta K, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka M (1995) Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci Biotechnol Biochem 59:1829–1834

    Article  PubMed  CAS  Google Scholar 

  • Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996a) Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci Biotechnol Biochem 60:717–720

    Article  PubMed  CAS  Google Scholar 

  • Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996b) Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim Biophys Acta 1291:177–181

    Google Scholar 

  • Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996c) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291:177–181

    PubMed  CAS  Google Scholar 

  • Masuda S, Tsukatani Y, Kimura Y, Nagashima KPV, Shimada K, Matsuura K (2002) Mutational analyses of the photosynthetic reaction center-bound triheme cytochrome subunit and cytochrome c2 in the purple bacterium Rhodovulm sulfidophilum. Biochemistry 41:11211–11217

    Article  PubMed  CAS  Google Scholar 

  • Pelicic V, Reyrat JM, Gicquel B (1996) Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol Microbiol 20:919–925

    Article  PubMed  CAS  Google Scholar 

  • Penfold RJ, Pemberton JM (1992) An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118:145–146

    Article  PubMed  CAS  Google Scholar 

  • Prentki P and Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313

    Article  PubMed  CAS  Google Scholar 

  • Puech V, Chami M, Lemassu A, Laneelle M, Schiffler B, Gounon P, Bayan N, Benz R, Daffe M (1947) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 24:687–695

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Satoh T, Hoshino Y, Kitamura H (1976) Rhodopseudomonas sphaeroides forma sp denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. Arch Microbiol 108:265–269

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1:37–45

    Google Scholar 

  • Stambuk BU, Panek AD, Crowe JH, Crowe LM, de Araujo PS (1998) Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae. Biochim Biophys Acta 1379:118–128

    PubMed  CAS  Google Scholar 

  • Streeter JG (2003) Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol 95:484–491

    Article  PubMed  CAS  Google Scholar 

  • Strøm AR (1998) Osmoregulation in the medl organism Escherichia coli; genes covering the synthesis of glycine betaine and trehalose and their use in metabolic engineering of stress torelance. J Biosci 23:437–445

    Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    PubMed  CAS  Google Scholar 

  • Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of trehalose synthase gene from Pimelobacter sp R48. Biochim Biophys Acta 1290:1–3

    PubMed  Google Scholar 

  • Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Sugimoto T, Kurimoto M (1997) Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC33923. Biochim Biophys Acta 1334:28–32

    PubMed  CAS  Google Scholar 

  • Vuorio OE, Kalkkinen N, Londesborough L (1993) Cloning of two related genes encoding the 56-kDa and 123-kDa subunit of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 216:846–861

    Article  Google Scholar 

  • Willis LB, Walker GC (1999) A novel Sinorhizobium meliloti operon encodes an alpha-glucosidase and a periplasmic-binding-protein-dependent transport system for alpha-glucosides. J Bacteriol 181:4176–4184

    PubMed  CAS  Google Scholar 

  • Wolf A, Kramer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134

    Article  PubMed  CAS  Google Scholar 

  • Xu XY, Abo M, Okubo A, Yamazaki S (1998) Trehalose as osmoprotectant in Rhodobacter sphaeroides f. sp. denitrificans IL106. Biosci Biotechnol Biochem 62:334–337

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Tsuzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makihara, F., Tsuzuki, M., Sato, K. et al. Role of trehalose synthesis pathways in salt tolerance mechanism of Rhodobacter sphaeroides f. sp. denitrificans IL106. Arch Microbiol 184, 56–65 (2005). https://doi.org/10.1007/s00203-005-0012-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0012-5

Keywords

Navigation