Skip to main content
Log in

Diverse Mesorhizobium plurifarium populations native to Mexican soils

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Forty-six Mesorhizobium strains associated with the leguminous plants Leucaena leucocephala and Sesbania herbacea in an uncultivated Mexican field were characterized using a polyphasic approach. The strains were identified as Mesorhizobium plurifarium based upon the close relationships with the reference strains for this species in PCR-based restriction fragment length polymorphism analyses, sequencing of 16S rRNA genes, multilocus enzyme electrophoresis, and DNA-DNA hybridization. Although the strains isolated from both plants formed the same group in multilocus enzyme electrophoresis and cross-nodulations were observed in the laboratory, different electrophoretic types were obtained from the two plants grown in natural soils, indicating the existence of a preferable association between the plants and the rhizobia. The M. plurifarium strains from Mexico and the reference strains from Africa and Brazil formed different phenotypic clusters in a numerical taxonomy. The Mexican strains did not grow at 37 °C and were sensitive to salty-alkaline conditions, while the reference strains from Africa and Brazil grew at 42 °C and were more resistant to salty-alkaline conditions. These results demonstrate that both the plants and environmental factors affected the evolution of rhizobia and that the Mexican strains had adapted to the neutral soils and the cool climate where they were isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Becker M, Ladha JK, Ottow JCG (1990) Growth and nitrogen fixation of two stem-nodulating legumes and their effects as green manure on lowland rice. Soil Biol Biochem 22:1109–1119

    Article  Google Scholar 

  • Bergersen FJ (1961) The growth of Rhizobium in synthetic media. Aust J Biol 14:349–360

    CAS  Google Scholar 

  • Brenner DJ, Staley JT, Krieg NR. (2001) Classification of procaryotic organisms and the concept of bacterial speciation. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 1. Springer, Berlin Heidelberg New York pp 27–31

  • Caballero-Mellado J, Martínez-Romero E (1994) Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotrophicus. Appl Environ Microbiol 60:1532–1537

    CAS  Google Scholar 

  • Caballero-Mellado J, Martínez-Romero E (1999) Soil fertilizer limits the genetic diversity of Rhizobium in bean nodules. Symbiosis 26:111–121

    Google Scholar 

  • Chen WX, Li GS, Qi YL, Wang ET, Yuan HL, Li JL (1991) Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280

    Google Scholar 

  • Chen WX, Wang ET, Wang SY, Li YB, Chen XQ, Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159

    CAS  PubMed  Google Scholar 

  • De Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B, Gillis M (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382

    PubMed  Google Scholar 

  • De Ley J (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754

    PubMed  Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (1999) Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field stidies. Biol Fertil Soils 29:221–245

    Article  Google Scholar 

  • Eckhardt T (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588

    CAS  PubMed  Google Scholar 

  • Fahraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381

    PubMed  Google Scholar 

  • Gao JL, Sun JG, Li Y, Wang ET, Chen WX (1994) Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol 44:151–158

    Google Scholar 

  • Genetics Computer Group. (1995). Program manual for the Wisconsin package, version 8. Genetics Computer Group, Madison, Wisconsin

  • Gillis M, Vandamme P, De Vos P, Swings J, Kersters K. (2001). Polyphasic Taxonomy. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology, 2ed edn. Vol. 1. Springer, Pringer-Verlag New York Berlin Heidelberg, pp43–48

  • Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS, Cooper JE, De Ley J, Jarvis BDW, Roslycky EB, Strijdom BW, Young JPW (1991) Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587

    Google Scholar 

  • Guo XW, Zhang XX, Zhang ZM, Li FD (1999) Characterization of Astragalus sinicus rhizobia by restriction fragment length polymorphism analysis of chromosomal and nodulation genes regions. Curr Microbiol 39:358–0364

    Article  CAS  PubMed  Google Scholar 

  • Hurek T, Wagner B, Reinhold-Hurek B (1997) Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints Appl Environ Microbiol 63:4331–4339

    Google Scholar 

  • Hynes MF, McGregor NF (1990) Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol Microbiol 4:567–574

    CAS  PubMed  Google Scholar 

  • Jarvis BDW (1983) Genetic diversity of Rhizobium strains which nodulate Leucaena leucocephala. Curr Microbiol 8:153–158

    CAS  Google Scholar 

  • Jarvis BDW, Pankhurst CE, Patel JJ (1982) Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32:378–380

    Google Scholar 

  • Martínez-Romero E, Caballero-Mellado J (1996) Rhizobium phylogenies and bacterial genetic diversity. Crit Rev Plant Sci 15:113–140

    Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426

    CAS  PubMed  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    CAS  PubMed  Google Scholar 

  • Nour SM, Fernandez MP, Normand P, Cleyet-Marel J.-C (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 4:511–522

    Google Scholar 

  • Nour SM, Cleyet-Marel J-C, Normand P, Fernandez MP (1995) Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648

    Google Scholar 

  • Page RD (1996) Tree View: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Peoples MB, Ladha JK, Herridge DF (1995) Enhancing legume N2 fixation through plant and soil management. Plant and Soil 174:83–101

    CAS  Google Scholar 

  • Piñero D, Martínez E, Selander RK (1988) Genetic diversity and relationshipsamong isolates of Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 54:2825–2832

    PubMed  Google Scholar 

  • Rogel MA, Hernández-Lucas I, Kuykendall LD, Balkwill DL, Martínez-Romero E. (2001). Nitrogen-fixing nodules with Ensifer adhaerens harboringg Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67:3264–3268

    CAS  PubMed  Google Scholar 

  • Sanginga N, Vanlauwe B, Danso SKA (1995) Management of biological N2 fixation in alley cropping system: estimation and contribution to N balance. Plant and Soil 174:119–141

    CAS  Google Scholar 

  • Segovia L, Young JPW, Martínez-Romero E (1993) Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol. 43:374–377

    Google Scholar 

  • Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884

    CAS  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San Francisco

  • Souza V, Nguyen TT, Hudson RR, Piñero D, Lenski RE (1992) Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex? Proc Natl Acad Sci USA 89:8389–8393

    CAS  PubMed  Google Scholar 

  • Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A. 92:8985–8989

    Google Scholar 

  • Tan ZY, Wang ET, Peng GX, Zhu ME, Martínez-Romero E, Chen WX (1999) Characterization of bacteria isolated from wild legumes in the Northwestern regions of China Int J Syst Bacteriol 49:1457–1469

    CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weigh matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Trinick MJ (1980) Relationships among the fast-growing rhizobia of Lablab pyrpureus, Leucaena leucocephala, Mimosa spp. Acacia farnesiana ana Sesbania grandifora and their affinities with other Rhizobium groups. J Appl Bacteriol 49:39–53

    Google Scholar 

  • Velázquez E, Igual JM, Willems A, Fernández MP, Muñoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gilli M, Martínez-Molina E (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021

    PubMed  Google Scholar 

  • Wang ET, Martínez-Romero E (2000) Sesbania herbacea-Rhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbacea-nodulating rhizobia in different environments. Microbiol Ecol 40:25–32

    CAS  Google Scholar 

  • Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martínez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699

    CAS  PubMed  Google Scholar 

  • Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999a) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65

    PubMed  Google Scholar 

  • Wang ET, Martínez-Romero J, Martínez-Romero E (1999b) Genetic diversity of rhizobia nodulating Leucaena leucocephala in Mexican soils. Mol Ecol 8:711–724

    Article  Google Scholar 

  • Ward DM (1998) A natural species concept for prokaryotes. Curr Opin Microbiol 1:271–277

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 37:463–464

    Google Scholar 

  • Yan AM, Wang ET, Kan FL, Tan ZY, Sui XH, Reinhold-Hurek B, Chen WX (2000) Sinorhizobium meliloti associated with Medicago sativa and Melilotus spp. in arid saline soils in Xinjiang, China. Int J Syst Evol Microbiolo 50:1887–1891

    CAS  Google Scholar 

  • Yelton MM, Yang SS, Edie SA, Lim ST (1983) Characterization of an effective salt-tolerant, fast-growing strain of Rhizobium japonicum. J Gen Microbiol 129:1537–1547

    Google Scholar 

  • Young JPW (1985) Rhizobium population genetics: enzyme polymorphism in isolates from peas, clover, beans and Lucerne grown at the same site. J Gen Microbiol 131:2399–2408

    CAS  Google Scholar 

  • Young JPW, Wexler M (1988) Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum. J Gen Microbiol 134:2731–2739

    CAS  Google Scholar 

  • Young JPW, Demetriou L, Apte RG (1987) Rhizobium population genetics: enzyme polymorphosm in Rhizobium leguminosarum from plant and soil in a pea crop. Appl Environ Microbiol 53:397–402

    Google Scholar 

Download references

Acknowledgements

We thank M. Antonio Rogel and Julio Martínez-Romero for their technical support. Partial financial support was from grant IN202097 of DGAPA, UNAM, Mexico, from grant 34123-N of CONACyT, Mexico, and from grant 2001CB108905 supported by the National Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, E.T., Kan, F.L., Tan, Z.Y. et al. Diverse Mesorhizobium plurifarium populations native to Mexican soils. Arch Microbiol 180, 444–454 (2003). https://doi.org/10.1007/s00203-003-0610-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0610-z

Keywords

Navigation