Skip to main content

Advertisement

Log in

Security of energy supply: will it stand the test of climate change—and what will it cost?

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Energy security is defined as the association between national security and the availability of natural resources for energy consumption and is a central component of political action. Since the oil crisis in 1973/1974, energy security is a topic of the general public. Over the years, the perception of energy security changed from reducing the dependency on oil exporting countries to additionally taking into account the decline of fossil fuels, environmental problems caused by conventional energy sources as well as the future electricity supply including renewable energy resources. Climate change increasingly impacts the environment and thus, water availability. That is why already today water availability impacts energy security in parts of Europe. In order to secure electricity supply, renewable energies such as wind turbines and photovoltaics, can be used additionally for electricity generation. Due to high fluctuation within the electricity grid, electricity supply can neither be secured by the conventional and nuclear power plants nor by renewable energies. Obviously, additional measures have to be taken to provide energy security. A system similar to demand-side management systems for electricity distribution can ease the problem and helps regulating the supply for electricity and water to the consumers to sustain energy security. For defining the necessary input data for such a system, it has to be analyzed which stakeholders are directly affected by water scarcity and/or low electricity supply, which data are already available and have additionally to be made available from each stakeholder and how these data will be used within the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  2. International Atomic Energy Agency (2004) Operating Experience with Nuclear Power Stations in Member States in 2003. International Atomic Energy Agency. http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1219_web.pdf. Accessed 24 June 2016

  3. Bernau P (2015) Polen geht der Strom aus. Frankfurter Allgemeine Zeitung. http://www.faz.net/aktuell/wirtschaft/energiepolitik/polens-stromversorgung-geraet-wegen-hitze-in-gefahr-13746679.html. Accessed 25 May 2016

  4. van Vliet MTH, Wiberg D, Leduc S, Riahi K (2016) Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat Clim Change 6:375–380. doi:10.1038/nclimate2903

    Article  Google Scholar 

  5. Flörke M, Wimmer F (2014) Water and energy: a competition for a limited resource. In: Institute Stockholm International Water (ed) Abstract volume world water week in Stockholm August 31– September 5, 2014. Energy and Water, Internationales Institut für angewandte Systemanalyse, Stockholm, p 10

  6. Newiadomsky C, Tietze I (2016) Beitrag Erneuerbarer Energien zur Verfügbarkeit von Elektrizität und Wasser in Afrika: Ansätze für eine nachhaltige Entwicklung? In: Leal Filho W (ed) Innovation in der Nachhaltigkeitsforschung. Springer Fachmedien, Wiesbaden

  7. Dierig C, Ettel A, Gassmann M (2015) Dürre lässt Deutschlands Binnenschifffahrt stocken. Die Welt. http://www.welt.de/wirtschaft/article144822629/Duerre-laesst-Deutschlands-Binnenschifffahrt-stocken.html. Accessed 05 August 2015

  8. United Nations (1992) Agenda 21. Sustainable Development Knowledge Platform. https://sustainabledevelopment.un.org/outcomedocuments/agenda21. Accessed 22 April 2016

  9. United Nations (2016) Record support for advancing Paris Climate Agreement entry into force. UN Department of Public Information. http://www.un.org/sustainabledevelopment/blog/2016/04/record-support-for-advancing-paris-climate-agreement-entry-into-force/. Accessed 25 April 2016

  10. United Nations Framework Convention on Climate Change (2015) Adoption of the Paris Agreement [document number: FCCC/CP/2015/L.9/Rev.1]. United Nations Framework Convention on Climate Change. http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf. Accessed 25 April 2016

  11. van Vliet MTH, Yearsley JR, Ludwig F, Vögele S, Lettenmaier DP, Kabat P (2012) Vulnerability of US and European electricity supply to climate change. Nat Clim Change 2:676–681. doi:10.1038/nclimate1546

    Article  Google Scholar 

  12. Hoffmann B, Häfele S, Karl U (2013) Analysis of performance losses of thermal power plants in Germany: a system dynamics model approach using data from regional climate modelling. Energy 49:193–203. doi:10.1016/j.energy.2012.10.034

    Article  Google Scholar 

  13. Flörke M, Bärlund I, Kynast E (2012) Will climate change affect the electricity production sector? A European study. J Water Clim Change 3:44–54. doi:10.2166/wcc.2012.066

    Article  Google Scholar 

  14. Edgar TF (1983) Coal processing and pollution control. Gulf Publishing Company, Houston

    Google Scholar 

  15. PLANCO Consulting GmbH, Bundesanstalt für Gewässerkunde (2007) Verkehrswirtschaftlicher und ökologischer Vergleich der Verkehrsträger Straße, Bahn und Wasserstraße: Zusammenfassung der Untersuchungsergebnisse. Wasser- und Schifffahrtsverwaltung des Bundes, vertreten durch die Wasser- und Schifffahrtsdirektion Ost. http://www.wsd-ost.wsv.de/service/Downloads/Verkehrstraegervergleich_Kurzfassung.pdf. Accessed 24 June 2016

  16. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (ed) (2014) Wasserwirtschaft in Deutschland-Teil 1: Grundlagen. Umweltbundesamt, Berlin

  17. DVGW-Technologiezentrum Wasser (ed) (2006) Exportorientierte F&E auf dem Gebiet der Wasserver- und –entsorgung. Teil I: Trinkwasser, Band 2 Leitfaden. DVGW-Technologiezentrum Wasser (TZW), Karlsruhe

  18. Ströbele W, Pfaffenberger W, Heuterkes M (2012) Energiewirtschaft. Oldenbourg-Verlag, Munich

    Google Scholar 

  19. Newiadomsky C, Tietze I (2016) Requirements on a service tool to foster demand-side-management under changing climate conditions. Karlsruhe Service Summit 2016 Proceedings. http://service-summit.ksri.kit.edu/downloads/Session_2C1_KSS_2016_paper_27.pdf. Accessed 25 May 2016

  20. Flörke M, Wimmer F (2013) Kühlwasserversorgung zu Zeiten des Klimawandels. Geographische Rundschau 65:18–24

    Google Scholar 

  21. Sovacool BK, Sovacool KE (2009) Identifying future electricity-water tradeoffs in the United States. Energy Policy 37:2763–2773. doi:10.1016/j.enpol.2009.03.012

    Article  Google Scholar 

  22. Byers EA, Hall JW, Amezaga JM (2014) Electricity generation and cooling water use: UK pathways to 2050. Glob Environ Change 25:16–30. doi:10.1016/j.gloenvcha.2014.01.005

    Article  Google Scholar 

  23. Schaeffer R, Szklo AS, de Lucena AFP, Borba BSMC, Nogueira LPP, Fleming FP, Troccoli A, Harrison M (2012) Energy sector vulnerability to climate change: a review. Energy 38:1–12. doi:10.1016/j.energy.2011.11.056

    Article  Google Scholar 

  24. Hekkenberg M, Moll HC, Schoot Uiterkamp AJM (2009) Dynamic temperature dependence patterns in future energy demand models in the context of climate change. Energy 34:1797–1806. doi:10.1016/j.energy.2009.07.037

    Article  Google Scholar 

  25. Tschobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment and reuse. McGraw-Hill, Metcalf & Eddy Inc, New York

    Google Scholar 

  26. Pilli-Sihvola K, Aatola P, Ollikainen M, Tuomenvirta H (2010) Climate change and electricity consumption: Witnessing increasing or decreasing use and costs? Energy Policy 38:2409–2419. doi:10.1016/j.enpol.2009.12.033

    Article  Google Scholar 

  27. Lamp H, Grundmann T (2009) Neue Entgeltstatistik in der Wasser- und Abwasserwirtschaft– Methodik und Ergebnisse. Wirtschaft und Statistik 6:596–601. Statistisches Bundesamt. https://www.destatis.de/DE/Publikationen/WirtschaftStatistik/Umwelt/EntgeltWasser.pdf?__blob=publicationFile. Accessed 8 Sep 2016

  28. Sathaye JA, Dale LL, Larsen PH, Fitts GA, Koy K, Lewis SM, Pereira de Lucena AF (2013) Estimating impacts of warming temperatures on California’s electricity system. Glob Environ Change 23:499–511. doi:10.1016/j.gloenvcha.2012.12.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Newiadomsky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newiadomsky, C., Seeliger, A. Security of energy supply: will it stand the test of climate change—and what will it cost?. Electr Eng 98, 385–393 (2016). https://doi.org/10.1007/s00202-016-0439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0439-5

Keywords

Navigation