Skip to main content
Log in

A geometric algebra reformulation and interpretation of Steinmetz’s symbolic method and his power expression in alternating current electrical circuits

Electrical Engineering Aims and scope Submit manuscript

Abstract

Developed more than a century ago, Steinmetz’s symbolic method is still puzzling us. It puzzles us because, in spite of its theoretical inconsistencies, it is heuristically efficient. However, it remains the dominant method in design, analysis, and operation of electrical power networks. The paper shows that Steinmetz’s mathematical expression for electrical power is based on assumptions inconsistent with the algebra of complex numbers. The paper argues that, although the numbers are correct, the mathematical interpretation of these numbers is not. Steinmetz got empirical right results for wrong conceptual reasons; the success of the symbolic method is based on the fact that, unwittingly, Steinmetz rediscovered Grassmann–Clifford geometric algebra. The paper challenges the dominant paradigm in power theory which represents voltage, current, active, reactive and apparent power as complex numbers and/or vectors (phasors). The author proposes a new paradigm in which these entities are represented as an algebraic group; the group is composed of a scalar, two vectors and a bivector which are residing in a four-dimensional algebraic space and in a two-dimensional Euclidean geometric space. The paper claims that Steinmetz’s symbolic method is the oldest engineering application of Clifford Algebra. The paper provides a strong motivation for a new didactic of power theory based on Geometric Algebra as Physics’ unifying language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Hong S (1995) Forging scientific electrical engineering. John Ambrose Fleming and the Ferranti effect. Isis 86(1):30–51

    Article  Google Scholar 

  2. Simons P (2009) Vectors and beyond: geometric algebra and its philosophical significance. Dialectica 63(4):381–395

    Article  MathSciNet  Google Scholar 

  3. Mathis W (1994) Analysis of power in nonlinear electrical circuits, Technical reports of the Technical University Budapest, Ser. Electr. Eng. J (5) In: Joint to Intern. Symp. Theor. Electrotechnics, No. TUB-TR-94-EE13, Budapest

  4. Wigner E (1960) The unreasonable effectiveness of mathematics in the natural sciences. Commun Pure Appl Math XIII(1):1–14

    Article  Google Scholar 

  5. Steinmetz CP (1911) Some unexplored fields in electrical engineering. J Franklin Inst CLXXI(6):537–559 (pg. 540)

    Article  Google Scholar 

  6. Steinmetz Ch (1890) Das Transformatorenproblem in elementar-geometrischer Behandlungsweise. E.T.Z 13:185–186

    Google Scholar 

  7. Steinmetz Ch (1890) Das Transformatorenproblem in elementar-geometrischer Behandlungsweise. E.T.Z. 14:205–206

    Google Scholar 

  8. Steinmetz Ch (1891) Anwendung des Polardiagramms der Wechselströme für inductive Widerstände. E.T.Z. 30:394–396

    Google Scholar 

  9. Steinmetz Ch (1891) Elementary geometrical theory of the alternate-current transformer. Electr Eng XI:627–629

  10. Zeuner G (1884) Treatise of valve-gears, with special considerations of link-motions of locomotive engines. E & F.N. Spon, London

  11. Emde F (1923) Die komplexe Darstellung der Ortskurven in Wechselstromdiagrammen. E.T.Z. 22:532

    Google Scholar 

  12. D’Agostino S, Leva S, Morando AP (2000) Per Una Storia della Teoria delle Reti Elettriche, Atti del XIX Congresso Nazionale di Storia della Fisica a dell’Astronomia, p 235

  13. Hahn SL (1996) Hilbert transforms in signal processing. Artech House, Boston

    MATH  Google Scholar 

  14. Gabor D (1946) Theory of communications. Trans Inst Electr Eng 3:429–457

    Google Scholar 

  15. Steinmetz CP (1893) Complex quantities and their use in electrical engineering. In: Proceedings of the International Electrical Congress, Chicago, pp 33–74 (pg. 40)

  16. Macfarlane A (1893) On the analytic treatment of alternating currents. In: Proceedings of the International Electrical Congress, Chicago, pp 24–31

  17. Discussions (1893) Proceedings of the International Electrical Congress, Chicago, pp 74–75

  18. Macfarlane A (1897) Application of hyperbolic analysis to the discharge of a condenser. In: AIEE Trans, vol 14, pp 163–174 (Discussion: pp 175–181, pp 250–252)

  19. Steinmetz CP (1900) Theorie und Berechnungen der Wechselstromerscheinungen, Deutsche von Verfasser Autorisierte Ausgabe, Berlin, Verlag von Reuther & Reichard, 1900, Anhang I

  20. Schubert H (1898) Arithmetic und Algebra, 2. Durchgesehene Aufl., Leipzig, G.L. Göschen

  21. Peacock G (1845) A treatise on algebra, vol II. On the symbolic algebra and its applications to the geometry of position, University Press, Cambridge, MDCCCXL

  22. Steinmetz CP (1899) Symbolic representation of general alternating waves and of double frequency vector products. In: AIEE Trans, vol XVI, pp 269–296 (pg. 270, pg. 272)

  23. Kline RR, Charles P (1983) Steinmetz and the development of electrical engineering science. PhD. Thesis, The University of Wisconsin-Madison, No. 83–23061

  24. Steinmetz CP (1911) Engineering mathematics, a series of lectures delivered at Union College. McGraw-Hill Book Co., New York

    MATH  Google Scholar 

  25. Feynman RP (1951) An operator calculus having applications in quantum electrodynamics. Phys Rev 84(1):108–128

    Article  MathSciNet  MATH  Google Scholar 

  26. Guilbert CF (1893) La méthode de M Steinmetz pour le calcul des courants alternatifs. La Lumière Électrique, Tome L, pp 541–458 (pp. 554–563)

  27. Guilbert CF (1896) Courants alternatifs et quantités complexes, L’Éclairage Électrique, pp 216–220

  28. Guilbert CF (1897) Courants oscillants et quantités complexes. L’Éclairage Électrique, Tome X, pp 22–30

  29. Janet P (1897) Sur une application des imaginaires au calcul des courants alternatifs. L’Éclairage Électrique, Tome XIII, pp 529–531

  30. Janet P (1923) Léçons d’Électrotechnique Générale. Tome III, Paris, Gauthier-Villars

  31. Breisig F (1899) Über die Anwendung des Vektordiagramms auf den Verlauf von Wechselströmen in langen Leitungen und über wirtschaftliche Grenzen höher Spannungen. E.T.Z., pp 400–403

  32. Breisig F (1901) Darf man die Theorie rein sinusförmiger Wechselströme in Frage der Kabeltelegraphie anwenden? E.T.Z. 20:415–419

    Google Scholar 

  33. La Cour JL, Bragstad OS (1913) Theory and calculation of electric currents. Longmans, Green and Co., London

    Google Scholar 

  34. Grattan-Guinness I (2000) Routes of learning. Highways, pathways, and byways in the history of mathematics, The John Hopkins University Press, p 23

  35. Mentis A, Zacharias T, Milias-Argitis J (2007) Geometric algebra: a powerful tool for representing power under non-sinusoidal conditions. IEEE Trans Circuits Syst I Regul Papers 54(3):601–609

    Article  Google Scholar 

  36. Castilla MM, Bravo JJC, Ordonez MM, Montano JJC (2008) Clifford theory: a geometrical interpretation of multivectorial apparent power. IEEE Trans Circuits Syst I Fundam Theory Appl 55(10):3358–-3367

    Article  MathSciNet  Google Scholar 

  37. Lev-Ari H, Stanković AM (2009) A geometrical algebra approach to decomposition of apparent power in general polyphase networks. In: 41th North American Power Symposium, Calgary

  38. Punga F (1901) Anwendung der Grassmann’schen linearen Ausdehnungslehre auf die analytische und graphische Behandlung von Wechselstromerscheinungen, Zeitschrift für Elektrotechnik, Vienna. Heft 43:516–520

    Google Scholar 

  39. Punga F (1938) Beitrag zur Bestimmung der Wirk-, und Blindleistung beim unsymmetrischen Dreiphasensystem. E.T.Z. 12:309–310

    Google Scholar 

  40. Punga F (1938) Zur Definition der Scheinleistung des unsymmetrischen Dreiphasenstromes und ihre Bestimmung, Archiv für Elektrotechnik 12:822–828

  41. Bolinder FF (1987) Clifford algebra: what is it? IEEE, Antennas and Propagation, Society Newsletter, pp 18–23

  42. Buchanan M (2011) Geometric intuition. Nat Phys 7:442

    Article  Google Scholar 

  43. Hestenes D, Sobczyk G (1984) Clifford algebra to geometric calculus. Reidel, Dordrecht

    Book  MATH  Google Scholar 

  44. Lounesto P (2001) Clifford algebras and spinors, \(2^{{\rm nd}}\) edition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  45. Altmann SL (1986) Rotations, quaternions, and double groups. Dover Publications, Inc., Mineola

    MATH  Google Scholar 

  46. Jancewicz B (1988) Multivectors and Clifford algebra in electrodynamics. World Scientific, Singapore

    MATH  Google Scholar 

  47. Dorst L, Doran C, Lasenby J (eds) (2002) Applications of geometric algebra in computer science and engineering. Birkhäuser, Boston

    MATH  Google Scholar 

  48. Dorst L, Fontijne D, Mann S (2007) Geometric algebra for computer science. Elsevier, Amsterdam

    Google Scholar 

  49. Zaddach A (1994) Grassmanns algebra in der Geometrie. B.I , Wissenschftsverlag, Mannheim

  50. Arthur JW (2011) Understanding geometric algebra for electromagnetic theory. Wiley, IEEE Press, Hoboken

    Book  MATH  Google Scholar 

  51. Dirac PAM (1925) The fundamental equations of quantum mechanics. Proc R Soc Lond A 109:642–653 (pg. 644)

    Article  MATH  Google Scholar 

  52. Calvet RG (2007) Treatise of plane geometry through geometric algebra. Cerdanyola del Vallès (pg. 19)

  53. Hitzer E, Nitta T, Kuroe Y (2013) Applications of Clifford’s geometric algebra. Adv Appl Clifford Algebra 23:377–404 (pg. 381)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Petroianu.

Appendix: mathematical proof

Appendix: mathematical proof

Calculation of the inner product: active power

$$\begin{aligned} {\overline{E}}\cdot {\overline{I}}&= \frac{1}{2}\left[ {\overline{E}}\,\, {\overline{I}} +{\overline{I}}\,\,{\overline{E}} \right] \\&= \frac{1}{2} \big \lceil \left( {e^{1}e_1 +e^{11}e_2 } \right) \left( {i^{1}e_1 +i^{11}e_2 } \right) \\&+\,\left( i^{1}e_1+i^{11}e_2 \right) \left( {e^{1}e_1 +e^{11}e_2 } \right) \big \rceil \\&= \frac{1}{2}\left[ \left( e^{1}e_1 i^{1}e_1 +e^{11}e_2 i^{11}e_2 +e^{1}e_1 i^{11}e_2\right. \right. \\&\left. +\,e^{11}e_2 i^{1}e_1 \right) +\left( i^{1}e_1 e^{1}e_1 +i^{11}e_2 e^{11}e_2\right. \\&\left. \left. +\,i^{1}e_1 e^{11}e_2 +i^{11}e_2 e^{1}e_1 \right) \right] \\&= \frac{1}{2}\left[ e^{1}i^{1}\left( {e_1 } \right) ^{2}+e^{11}i^{11}\left( {e_2 } \right) ^{2}+e^{1}i^{11}e_1 e_2\right. \\&\left. +\, e^{11}i^{1}e_2 e_1 +i^{1}e^{1}\left( {e_1 } \right) ^{2}+\,i^{11}e^{11}\left( {e_2 } \right) ^{2}\right. \\&\left. +\,i^{1}e^{11}e_1 e_2 +i^{11}e^{1}e_2 e_1 \right] \\&= \frac{1}{2}\left[ {e^{1}i^{1}+e^{11}i^{11}+i^{1}e^{1}+i^{11}e^{11}} \right] \\&= \frac{1}{2}\left[ {2e^{1}i^{1}+2e^{11}i^{11}} \right] =e^{1}i^{1}+e^{11}i^{11} \end{aligned}$$

The expression \((e^{1}i^{1}~+~e^{11}i^{11})\), obtained through geometric algebra, is identical to Steinmetz’s expression for active power \([P]^{1}\), obtained through symbolic method. The rule \(e_{1}e_{2} = -e_{2}e_{1}\) applies.

Calculation of the outer (wedge) product: reactive power

$$\begin{aligned} \overline{E}{\wedge }\overline{I}&= \frac{1}{2}[\overline{E}\,\,\overline{I}-\overline{I}\,\,\overline{E}]\\&= \frac{1}{2}\left[ (e^{1}e_{1}+e^{11}e_{2})(i^{1}e_{1} + i^{11}e_{2})\right. \\&-\left. (i^{1}e_{1} +i^{11}e_{2})(e^{1}e_{1} + e^{11}e_{2})\right] \\&= \frac{1}{1}\left[ (e^{1}e_{1}i^{1}e_{1} +e^{11}e_{2}i^{11}e_{2}\right. \\&+\left. e^{1}e_{1}i^{11}e_{2} + e^{11}e_{2}i^{1}e_{1})\right. \\&-\left. (i^{1}e_{1}e^{1} + i^{11}e_{2}e^{11}e_{2})\right. \\&+\left. i^{1}e_{1}e^{11}e_{2} + i^{1}e_{1}e^{11}e_{2} + i^{11}e_{2}e^{1}e_{1}\right] \\&= \frac{1}{2}\left[ (e^{1}i^{1}{(e_{1})}^{2}+ e^{11}i^{11}{(e_{2})}^{2}\right. \\&+\left. e^{1}i^{11}e_{1}e_{2} + e^{11}i^{1}e_{2}e_{1})\right. \\&-\left. (i^{1}e^{1}{(e_{1})}^{2} +i^{11}e^{11}{(e_{2})}^{2}\right. \\&+\left. i^{1}e^{11}e_{1}e_{2}+ i^{11}e^{1}e_{2}e_{1} )\right] \\&= \frac{1}{2}\left[ (e^{1}i^{1}+e^{11}i^{11} + e^{1}i^{11}e_{1}e_{2} + e^{11}i^{1}e_{2}e_{1})\right. \\&-\left. (e^{1}i^{1}+e^{11}i^{11}-e^{1}i^{11}e_{1}e_{2}+e^{11}i^{1}e_{1}e_{2})\right] \\&= \frac{1}{2}\left[ e^{1}i^{1}+e^{11}i^{11}+e^{1}i^{11}e_{1}e_{2}-e^{11}i^{1}e_{1}e_{2}\right. \\&-\left. e^{1}i^{1}-e^{11}i^{11}+ e^{1}i^{11}e_{1}e_{2}-e^{11}i^{1}e_{1}e_{2}\right] \\&= \frac{1}{2}\left[ 2e^{1}i^{11}e_{1}e_{2}-2e^{11}i^{1}e_{1}e_{2} \right] \\&= e^{1}i^{11}e_{1}e_{2}-e^{11}i^{1}e_{1}e_{2}\\&= [e^{1}i^{11}-e^{11}i^{1}]e_{1}e_{2}=(e^{1}i^{11}-e^{11}i^{1})e_{12}\\&= (e^{1}i^{11}-e^{11}i^{1}){\mathcal {J}} \end{aligned}$$

The expression \(\left( {e^{1}i^{11}-e^{11}i^{1}} \right) \), obtained through Geometric Algebra, is identical to Steinmetz’s expression for reactive power \(\left[ P \right] ^{j}\), obtained through symbolic method. . The rule \(e_{1}e_{2} = -e_{2}e_{1}\) applies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petroianu, A.I. A geometric algebra reformulation and interpretation of Steinmetz’s symbolic method and his power expression in alternating current electrical circuits. Electr Eng 97, 175–180 (2015). https://doi.org/10.1007/s00202-014-0325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-014-0325-y

Keywords

Navigation