Skip to main content
Log in

High performance DTC of induction motor drives over a wide speed range

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents an effective scheme to minimize the torque ripples for direct torque control (DTC) of induction motor drives. The switching strategy compares the torque error from a PI torque controller with two triangular waveforms, and then produces a constant switching frequency, which is determined by the frequency of the triangular waveforms and is almost independent of the speed. The gains of PI torque controller are designed based on root-locus plot to guarantee a good convergence of the torque error. In order to examine the performance of the proposed DTC scheme for an induction motor drive, a complete simulation model is developed using MATLAB/Simulink and validated under a wide speed range. The proposed DTC drive is also implemented and tested in real-time using a DSP-DS1102 control board for a prototype 1 KW induction motor. Simulation and experimental results show that the proposed DTC drive exhibits a good dynamic and steady state performances with low torque ripples over a wide speed control range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Takahashi I, Noguchi T (1986) A new quick-response and high-efficiency control strategy of an induction motor. IEEE Trans Ind Appl 22:820–827

    Article  Google Scholar 

  2. Depenbrock M (1988) Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans Power Electron 3:420–429

    Article  Google Scholar 

  3. Casadei D, Profumo F, Serra G, Tani A (2002) FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans Power Electron 17(5):779–787

    Article  Google Scholar 

  4. Casadei D, Grandi G, Serra G, Tani A (1994) Effects of flux and torque hysteresis band amplitude in direct torque control of induction machines. In: Proceedings of the IECON’94, Bologna, Italy, Sept 5–9, 1994, pp 299–304

  5. Kang JK, Sul SK (2001) Analysis and prediction of inverter switching frequency in direct torque control of induction machine based on hysteresis bands and machine parameters. IEEE Trans Ind Electron 48(3):545–553

    Article  Google Scholar 

  6. Purcell A, Acarnley PP (2001) Enhanced inverter switching for fast response direct torque control. IEEE Trans Power Electron 16(3):382–389

    Article  Google Scholar 

  7. Kang JK, Sul SK (1999) New direct torque control of induction motor for minimum torque ripple and constant switching frequency. IEEE Trans Ind Appl 35(5):1076–1082

    Article  Google Scholar 

  8. Shyu K, Lin JK, Pham V, Yang M, Wang T (2010) Global minimum torque ripple design for direct torque control of induction motor drives. IEEE Trans Ind Electron 57(9):3148–3156

    Article  Google Scholar 

  9. Beerten J, Verveckken J, Driesen J (2010) Predictive direct torque control for flux and torque ripple reduction. IEEE Trans Ind Electron 57(1):404–412

    Article  Google Scholar 

  10. Kaboli S, Zolghadri MR, Vahdati-Khajeh E (2007) A fast flux search controller for DTC-based induction motor drives. IEEE Trans Ind Electron 54(5):2407–2416

    Article  Google Scholar 

  11. Zhang Y, Zhu J, Zhao Z, Xu W, Dorrell DG (2012) An improved direct torque control for three-level inverter-fed induction motor sensorless drive. IEEE Trans Power Electron 27(3):1502–1513

    Article  Google Scholar 

  12. Singh B, Jain S, Dwivedi S (2013) Torque ripple reduction technique with improved flux response for a direct torque control induction motor drive. IET Power Electron 6(2):326–342

    Article  Google Scholar 

  13. Metidji B, Taib N, Baghli L, Rekioua T, Bacha S (2012) Low-cost direct torque control algorithm for induction motor without AC phase current sensors. IEEE Trans Power Electron 27(9):4132–4139

    Article  Google Scholar 

  14. El Badsi B, Bouzidi B, Masmoudi A (2013) DTC scheme for a four-switch inverter-fed induction motor emulating the six-switch inverter operation. IEEE Trans Power Electron 28(7):3528–3538

    Article  Google Scholar 

  15. Lai YS, Chen JH (2001) A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction. IEEE Trans Energy Convers 16(3):220–227

    Article  MathSciNet  Google Scholar 

  16. Casadei D, Serra G, Tani A (2000) Implementation of a direct torque control algorithm for induction motors based on discrete space vector modulation. IEEE Trans Power Electron 15(4):769–777

    Article  Google Scholar 

  17. Zhang Z, Tang R, Bai B, Xie D (2010) Novel direct torque control based on space vector modulation with adaptive stator flux observer for induction motors. IEEE Trans Magn 46(8):3133–3136

    Article  Google Scholar 

  18. Casadei D, Serra G, Stefani A, Tani A, Zarri L (2007) DTC drives for wide speed range applications using a robust flux-weakening algorithm. IEEE Trans Ind Electron 54(5):2451–2461

    Article  Google Scholar 

  19. Kaboli S, Zolghadri MR, Khajeh EV (2007) A fast flux search controller for DTC-based induction motor drives. IEEE Trans Ind Electron 54(5):2407–2416

    Article  Google Scholar 

  20. Romeral L, Arias A, Aldabas E, Jayne MG (2003) Novel direct torque control (DTC) scheme with fuzzy adaptive torque-ripple reduction. IEEE Trans Ind Electron 50(3):487–492

    Article  Google Scholar 

  21. Uddin MN, Hafeez M (2012) FLC-based DTC scheme to improve the dynamic performance of an IM drive. IEEE Trans Ind Appl 48(2):823–831

    Article  Google Scholar 

  22. Grcar B, Stumberger G, Hofer A, Cafuta P (2014) IM torque control schemes based on stator current vector. IEEE Trans Ind Electron 61(1):126–138

    Article  Google Scholar 

  23. Sutikno T, Idris NR, Jidin A, Cirstea MN (2013) An improved FPGA implementation of direct torque control for induction machines. IEEE Trans Ind Inform 9(3):1280–1290

    Article  Google Scholar 

  24. Lascu C, Boldea I, Blaabjerg F (2000) A modified direct torque control for induction motor sensorless drive. IEEE Trans Ind Appl 36(1):122–130

    Article  Google Scholar 

  25. Lee KB, Song JH, Choy I, Yoo JY (2001) Improvement of low-speed operation performance of DTC for three-level inverter-fed induction motors. IEEE Trans Ind Electron 48(5):1006–1014

    Google Scholar 

  26. Toh CL, Idris NRN, Yatim AHM (2005) Constant and high switching frequency torque controller for DTC drives. IEEE Power Electron Lett 3(2):76–80

    Article  Google Scholar 

  27. Idris N, Yatim AM (2004) Direct torque control of induction machines with constant switching frequency and reduced torque ripple. IEEE Trans Ind Electron 51(4):758–767

    Article  Google Scholar 

  28. Hajian M, Soltani J, Markadeh GA, Hosseinnia S (2010) Adaptive nonlinear direct torque control of sensorless IM drives with efficiency optimization. IEEE Trans Ind Electron 57(3):975–985

    Article  Google Scholar 

  29. Xiao D, Rahman MF (2013) Sensorless direct torque and flux controlled IPM synchronous machine fed by matrix converter over a wide speed range. IEEE Trans Ind Inform 9(4):1855–1867

    Article  Google Scholar 

  30. Lascu C, Boldea I, Blaabjerg F (2005) Very-low-speed variable-structure control of sensorless induction machine drives without signal injection. IEEE Trans Ind Appl 41(2):591–598

  31. Buja G, Menis R (2008) Steady-state performance degradation of a DTC IM drive under parameter and transduction errors. IEEE Trans Ind Electron 55(4):1749–1760

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Zaky.

Appendix

Appendix

See Tables 3, 4 and 5.

Table 3 Rated values and parameters of the induction motor
Table 4 Gains of the PI torque controller
Table 5 Gains of the PI speed controller

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaky, M.S. High performance DTC of induction motor drives over a wide speed range. Electr Eng 97, 139–154 (2015). https://doi.org/10.1007/s00202-014-0321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-014-0321-2

Keywords

Navigation