Skip to main content

Advertisement

Log in

Reactive power and voltage control in grid-connected wind farms: an online optimization based fast model predictive control approach

Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the application of an online optimization based fast model predictive control scheme to grid-connected wind farms for reactive power and voltage control. A linear prediction model of the network was used to predict the behavior of the system for a certain prediction horizon, while a modified quadratic programming problem was used for the optimization process. The proposed controller was tested in a 5-bus test system hosting three sub-wind farms of total 36 MW active power production capacity connected in series to the external network. The controller performed its control action by changing the reactive power output of the sub-wind farms and voltage set-points of an online load tap changer transformer to respect the safety limit imposed on the bus voltages and desired reactive power exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abedinia O, Amjady N, Ghasemi A, Hejrati Z (2013) Solution of economic load dispatch problem via hybrid particle swarm optimization with time-varying acceleration coefficients and bacteria foraging algorithm techniques. Int Trans Electr Energy Syst 23(8):1504–1522

    Article  Google Scholar 

  2. Ackermann T, Knyazkin V (2002) Interaction between distributed generation and the distribution network: operation aspects. In: IEEE/PES, transmission and distribution conference and exhibition, Asia Pacific, vol 2. IEEE Press, New York, pp 1357–1362

  3. Afkousi-Paqaleh M, Rashidinejad M, Pourakbari-Kasmaei M (2010) An implementation of harmony search algorithm to unit commitment problem. Electr Eng 92(6):215–225

    Article  Google Scholar 

  4. Afzalan E, Joorabian M (2014) An improved cuckoo search algorithm for power economic load dispatch. Int Trans Electr Energy Syst. doi: 10.1002/etep.1878

  5. Ahmidi A, Guillaud X, Besanger Y, Blanc R (2012) A multilevel approach for optimal participating of wind farms at reactive power balancing in transmission power system. IEEE Syst J 6(2):260–269

    Article  Google Scholar 

  6. Alamir M (2012) A framework for real-time implementation of low-dimensional parameterized nmpc. Automatica 48(1):198–204

    Article  MATH  MathSciNet  Google Scholar 

  7. Alamir M, Allgower F (2008) Model predictive control. Int J Robust Nonlinear Control 18(8):799–799

    Article  MATH  MathSciNet  Google Scholar 

  8. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammerling S, McKenney A et al (1999) LAPACK Users’ guide, vol 9. SIAM, Philadelphia

  9. Arul R, Ravi G, Velusami S (2014) An improved harmony search algorithm to solve economic load dispatch problems with generator constraints. Electr Eng 96(1):55–63

  10. Attia SA, Alamir M, De Wit CC (2006) Voltage collapse avoidance in power systems: a receding horizon approach. Intell Autom Soft Comput 12(1):9–22

    Article  Google Scholar 

  11. Nasr Azadani E, Hosseinian SH, Hasanpor P (2008) Optimal placement of multiple statcom for voltage stability margin enhancement using particle swarm optimization. Electr Eng 90(7):503–510

    Article  Google Scholar 

  12. Badar AQH, Umre BS, Junghare AS (2012) Reactive power control using dynamic particle swarm optimization for real power loss minimization. Int J Electr Power Energy Syst 41(1):133–136

    Article  Google Scholar 

  13. Barker PP, de Mello RW (2000) Determining the impact of distributed generation on power systems. I. Radial distribution systems. In: Power engineering society summer meeting, vol 3. IEEE Press, New York, pp1645–1656

  14. Boyd S, Vandenberghe L (2009) Convex optimization. Cambridge university press, Cambridge

    Google Scholar 

  15. Camacho EF, Alba CB (2013) Model predictive control. Springer, Berlin

    Google Scholar 

  16. Chakraborty P, Roy GG, Panigrahi BK, Bansal RC, Mohapatra A (2012) Dynamic economic dispatch using harmony search algorithm with modified differential mutation operator. Electr Eng 94(4):197–205

    Article  Google Scholar 

  17. Cortés P, Kazmierkowski MP, Kennel RM, Quevedo DE, Rodríguez J (2008) Predictive control in power electronics and drives. IEEE Trans Ind Electr 55(12):4312–4324

    Article  Google Scholar 

  18. Devaraj D (2007) Improved genetic algorithm for multi-objective reactive power dispatch problem. Eur Trans Electr Power 17(6):569–581

    Article  Google Scholar 

  19. Domahidi A, Zgraggen AU, Zeilinger MN, Morari M, Jones C (2012) Efficient interior point methods for multistage problems arising in receding horizon control. In: Proceedings of the 51st IEEE conference on decision and control, number EPFL-CONF-181938

  20. Abou El Ela AA, Spea SR (2009) Optimal power flow using differential evolution algorithm. Electr Eng 91(2):69–78

    Article  Google Scholar 

  21. Abou El-Ela AA, Kinawy AM, El-Sehiemy RA, Mouwafi MT (2011) Optimal reactive power dispatch using ant colony optimization algorithm. Electr Eng 93(2):103–116

    Article  Google Scholar 

  22. Geyer T (2005) Low complexity model predictive control in power electronics and power systems. Cuvillier, Belgium

    Google Scholar 

  23. Geyer T, Papafotiou G, Morari M (2005) Model predictive control in power electronics: a hybrid systems approach. In: CDC-ECC’05. 44th IEEE conference on decision and control, 2005 and 2005 European control conference. IEEE Press, New York, pp 5606–5611

  24. Ghorbani N, Vakili S, Babaei E, Sakhavati A (2014) Particle swarm optimization with smart inertia factor for solving non-convex economic load dispatch problems. Int Trans Electr Energy Syst 24(8):1120–1133

  25. Glavic M, Hajian M, Rosehart W, Van Cutsem T (2011) Receding-horizon multi-step optimization to correct nonviable or unstable transmission voltages. IEEE Trans Power Syst 26(3):1641–1650

    Article  Google Scholar 

  26. Gong B, Hiskens I (2011) A stable finite horizon model predictive control for power system voltage collapse prevention. In: 50th IEEE conference on decision and control and European control conference (CDC-ECC). IEEE Press, New York, pp 7105–7110

  27. Gong B, Hiskens IA (2008) Two-stage model predictive control for voltage collapse prevention. In: Power symposium. NAPS’08. 40th North American. IEEE Press, New York, pp 1–7

  28. Hooshmand R (2005) Application of a genetic algorithm in the reduction of loss and control of the voltage of distribution networks using the real optimization of fixed and switched capacitors. Eur Trans Electr Power 15(5):425–442

    Article  Google Scholar 

  29. Hooshmand RA, Mohkami H (2011) New optimal placement of capacitors and dispersed generators using bacterial foraging oriented by particle swarm optimization algorithm in distribution systems. Electr Eng 93(1):43–53

    Article  Google Scholar 

  30. John E, Yıldırım EA (2008) Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension. Comput Optim Appl 41(2):151–183

    Article  MATH  MathSciNet  Google Scholar 

  31. Kennel R, Linder A, Linke M (2001) Generalized predictive control (gpc)-ready for use in drive applications? In: PESC. 2001 IEEE 32nd annual power electronics specialists conference, vol 4. IEEE Press, New York, pp 1839–1844

  32. Kennel R, Linder A (2000) Predictive control of inverter supplied electrical drives. In: Proceedings of the power electronics specialists conference (PESC 00), pp 761–766

  33. Kouro S, Cortes P, Vargas R, Ammann U, Rodriguez Jose (2009) Model predictive control-a simple and powerful method to control power converters. IEEE Trans Ind Electr 56(6):1826–1838

    Article  Google Scholar 

  34. Larsson M, Hill DJ, Olsson G (2002) Emergency voltage control using search and predictive control. Int J Electr Power Energy Syst 24(2):121–130

    Article  Google Scholar 

  35. Lei X, Lerch E, Povh D (1999) Genetic algorithm solution to economic dispatch problems. Eur Trans Electr Power 9(6):347–353

    Article  Google Scholar 

  36. Lopes JA, Hatziargyriou N, Mutale J, Djapic P, Jenkins N (2007) Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities. Electr Power Syst Res 77(9):1189–1203

    Article  Google Scholar 

  37. Mattingley J, Boyd S (2012) Cvxgen: a code generator for embedded convex optimization. Optim Eng 13(1):1–27

  38. Moradi MH, Abedini M (2012) A combination of genetic algorithm and particle swarm optimization for optimal dg location and sizing in distribution systems. Int J Electr Power Energy Syst 34(1):66–74

    Article  Google Scholar 

  39. Gurobi Optimization Inc. (2014) Gurobi optimizer reference manual (2012)

  40. Rajagopalan A, Sengoden V, Govindasamy R (2014) Solving economic load dispatch problems using chaotic self-adaptive differential harmony search algorithm. Int Trans Electr Energy Syst. doi:10.1002/etep.1877

  41. Rameshkhah F, Abedi M, Hosseinian SH (2010) Clustering of voltage control areas in power system using shuffled frog-leaping algorithm. Electr Eng 92(7–8):269–282

    Article  Google Scholar 

  42. Ruiz-Rodriguez FJ, Jurado F, Gomez-Gonzalez M (2014) A hybrid method combining JFPSO and probabilistic three-phase load flow for improving unbalanced voltages in distribution systems with photovoltaic generators. Electr Eng 96(3):275–286

  43. Secui DC (2013) A method based on the ant colony optimization algorithm for dynamic economic dispatch with valve-point effects. Int Trans Electr Energy Syst. doi:10.1002/etep.1841

  44. Sharma P, Thukaram D (2012) Reactive power and voltage control in grid connected wind farms. In: 7th IEEE international conference on industrial and information systems (ICIIS). IEEE Press, New York, pp 1–6

  45. Chun-Lien S (2010) Stochastic evaluation of voltages in distribution networks with distributed generation using detailed distribution operation models. IEEE Trans Power Syst 25(2):786–795

    Article  Google Scholar 

  46. Teninge A (2009) Participation aux services systeme de parcs eoliens mixtes: application en milieu insulaire. PhD thesis, Institut National Polytechnique de Grenoble-INPG

  47. Marina T, Papathanassiou S (2009) A review of grid code technical requirements for wind farms. IET Renew Power Gener 3(3):308–332

    Article  Google Scholar 

  48. Vaisakh K, Srinivas LR, Kala M (2013) Genetic evolving ant direction psodv hybrid algorithm for opf with non-smooth cost functions. Electr Eng 95(3):185–199

    Article  Google Scholar 

  49. Valverde G, Van Cutsem T (2013) Control of dispersed generation to regulate distribution and support transmission voltages. In PowerTech (POWERTECH), 2013 IEEE Grenoble. IEEE Press, New York, pp 1–6

  50. Valverde G, Van Cutsem T (2013) Model predictive control of voltages in active distribution networks. IEEE Trans Smart Grid 4(4):2152–2161

    Article  Google Scholar 

  51. Van Cutsem T, Gustavo V (2013) Coordinated voltage control of distribution networks hosting dispersed generation

  52. Wang L (2009) Model predictive control system design and implementation using MATLAB\(textregistered\). Springer, Berlin

  53. Wang Y, Boyd S (2010) Fast model predictive control using online optimization. IEEE Trans Control Syst Technol 18(2):267–278

    Article  Google Scholar 

  54. Yildirim AE, Wright SJ (2002) Warm-start strategies in interior-point methods for linear programming. SIAM J Optim 12(3):782–810

    Article  MATH  MathSciNet  Google Scholar 

  55. Zong Y, Kullmann D, Thavlov A, Gehrke O (2012) Application of model predictive control for active load management in a distributed power system with high wind penetration. IEEE Trans Smart Grid 3(2):1055–1062

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to greatly acknowledge the contribution of Prof. Xavier Guillaud, Dr. Asma Merdassi and Dr. Alexandre Teninge. This article would not be possible without their guidance during the master thesis of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H. Reactive power and voltage control in grid-connected wind farms: an online optimization based fast model predictive control approach. Electr Eng 97, 35–44 (2015). https://doi.org/10.1007/s00202-014-0314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-014-0314-1

Keywords

Navigation