Skip to main content
Log in

Sensorless vector control of PMSM with non-sinusoidal flux using observer based on FEM

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Back electromotive force method has been widely used in the position and speed sensorless control of permanent magnet synchronous motors. In this method, it is supposed that the back electromotive forces induced on the stator windings by the rotor permanent magnets are sinusoidal. This assumption causes errors in the estimation of speed and position. In this paper, an observer using the stator winding linkage flux model obtained by using finite element method for position and speed sensorless field-oriented control of permanent magnet motor is proposed. The validity of the proposed method is demonstrated using DS 1104.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rusong W, Slemon G (1991) A permanent magnet motor drive without a shaft sensor. IEEE Trans Ind Appl 27(5):1005–1011

    Article  Google Scholar 

  2. Zhu ZQ, Gong LM (2011) Investigation of effectiveness of sensorless operation in carrier-signal-injection-based sensorless-control methods. IEEE Trans Ind Electron 58(8):3431–3439

    Article  Google Scholar 

  3. Wallmark O, Harnefors L (2006) Sensorless control of salient PMSM drives in the transition region. IEEE Trans Ind Electron 53(4):1179–1187

    Article  Google Scholar 

  4. Gumus B, Ozdemir M (2006) Sensorless vector control of a Permanent magnet synchronous motor with fuzzy logic observer. Electr Eng 88:395–402

    Article  Google Scholar 

  5. Nahid-Mobarakeh B, Meibody-Tabar F, Sargos FM (2007) Back EMF estimation-based sensorless control of PMSM: robustness with respect to measurement errors and inverter irregularities. IEEE Trans Ind Appl 43(2):485–494

    Google Scholar 

  6. Boussak M (2005) Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for interior permanent magnet synchronous motor drive. IEEE Trans Power Electron 20(6):1413–1422

    Article  Google Scholar 

  7. Kim H, Son J, Lee J (2011) A high-speed sliding-mode observer for the sensorless speed control of a PMSM. IEEE Trans Ind Electron 58(9):4069–4077

    Article  Google Scholar 

  8. Genduso F, Miceli R, Rando C, Galluzzo GR (2010) Back EMF sensorless-control algorithm for high-dynamic performance PMSM. IEEE Trans Ind Electron 57(6):2092–2100

    Article  Google Scholar 

  9. De Angelo C, Bossio G, Solsona J, Garcia GO, Valla MI (2005) A rotor position and speed observer for permanent-magnet motors with nonsinusoidal EMF waveform. IEEE Trans Ind Electron 52(3):807–813

    Article  Google Scholar 

  10. Sergeant P, De Belie F, Melkebeek J (2009) Effect of rotor geometry and magnetic saturation in sensorless control of PM synchronous machines. IEEE Trans Magn 45(3):1756–1759

    Article  Google Scholar 

  11. Jahns T, Soong W (1996) Pulsating torque minimization techniques for permanent magnet AC motor drives–a review. IEEE Trans Ind Electron 43(2):321–330

    Article  Google Scholar 

  12. Xu JX, Panda SK, Pan YJ, Lee TH, Lam BH (2004) A modular control scheme for PMSM speed control with pulsating torque minimization. IEEE Trans Ind Electron 51(3):526–536

    Article  Google Scholar 

  13. Xiao X, Chen C, Zhang M (2010) Dynamic permanent magnet flux estimation of permanent magnet synchronous machines. IEEE Trans Appl Supercond 20(3):1085–1088

    Article  Google Scholar 

  14. Bouillault F, Marchand C (1995) Improvement of servomotors control laws with the help of finite element method. IEEE Trans Magn 31(3):2020–2025

    Article  Google Scholar 

  15. Östlund S, Brokemper M (1996) Sensorless rotor-position detection from zero to rated speed for an integrated pm synchronous motor drive. IEEE Trans Ind Appl 32(5):1158–1164

    Article  Google Scholar 

  16. Pereira LA, Canalli VM (Oct 2002) Five-phase permanent magnet synchronous machine operating as generator design, parameter determination by FEM and performance. In: 37th IAS annual meeting. Pittsburgh, PA, USA, pp 398–405

  17. Blaabjerg F, Pedersen JK, Thogersen P (1997) Improved modulation techniques for PWM-VSI drives. IEEE Trans Ind Electron 44(1):87–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyyup Oksuztepe.

Appendix

Appendix

The size of the motor is given as follows:

  • The length of the motor: 50 mm

  • The radius of the stator: 69 mm

  • The radius of the rotor: 35.85 mm

  • The radius of the motor mile: 20 mm

  • The magnet thickness: 3 mm

  • The width of air gap: 0.5 mm

Electrical and mechanical parameters:

  • The phase resistance, \(r_\mathrm{s}\): \(2.6\Omega \)

  • The self inductance, \(L\): 3.63 mH

  • The inertia, \(J\): \(0.00257955~\hbox {kgm}^{2}\)

  • The damping coefficient, \(B\): 0.00003743 Nms/rad

  • The magnet flux, \(\lambda _{m}\): 0.114 weber

  • Number of poles, \(2P\): 4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oksuztepe, E., Omac, Z. & Kurum, H. Sensorless vector control of PMSM with non-sinusoidal flux using observer based on FEM. Electr Eng 96, 227–238 (2014). https://doi.org/10.1007/s00202-013-0294-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-013-0294-6

Keywords

Navigation