Skip to main content
Log in

A combinatorial approach to involution and δ-regularity I: involutive bases in polynomial algebras of solvable type

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Involutive bases are a special form of non-reduced Gröbner bases with additional combinatorial properties. Their origin lies in the Janet–Riquier theory of linear systems of partial differential equations. We study them for a rather general class of polynomial algebras including also non-commutative algebras like those generated by linear differential and difference operators or universal enveloping algebras of (finite-dimensional) Lie algebras. We review their basic properties using the novel concept of a weak involutive basis and present concrete algorithms for their construction. As new original results, we develop a theory for involutive bases with respect to semigroup orders (as they appear in local computations) and over coefficient rings, respectively. In both cases it turns out that generally only weak involutive bases exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3. American Mathematical Society, Providence (1994)

  2. Apel, J.: Gröbnerbasen in Nichtkommutativen Algebren und ihre Anwendung. PhD thesis, Universität Leipzig (1988)

  3. Apel J.: The computation of Gröbner bases using an alternative algorithm. In: Bronstein, M., Grabmeier, J., Weispfenning, V. (eds) Symbolic Rewriting Techniques, Progress in Computer Science and Applied Logic, vol. 15., pp. 35–45. Birkhäuser, Basel (1998)

    Google Scholar 

  4. Apel J.: Theory of involutive divisions and an application to Hilbert function computations. J. Symb. Comput. 25, 683–704 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Apel J., Hemmecke R.: Detecting unnecessary reductions in an involutive basis computation. J. Symb. Comput. 40, 1131–1149 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Becker Th., Weispfenning V.: Gröbner Bases. Graduate Texts in Mathematics, vol. 141. Springer, New York (1993)

    Google Scholar 

  7. Bell A.D., Goodearl K.R.: Uniform rank over differential operator rings and Poincaré–Birkhoff–Witt extensions. Pacific J. Math. 131, 13–37 (1988)

    MATH  MathSciNet  Google Scholar 

  8. Berger R.: The quantum Poincaré–Birkhoff–Witt theorem. Comm. Math. Phys. 143, 215–234 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Björk J.E.: Rings of Differential Operators. North-Holland Mathematical Library 21. North- Holland, Amsterdam (1979)

    Google Scholar 

  10. Blinkov Yu.A.: Method of separative monomials for involutive divisions. Prog. Comput. Softw. 27, 139–141 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bueso J.L., Gómez-Torrecillas J., Lobillo F.J.: Homological computations in PBW modules. Alg. Rep. Theor. 4, 201–218 (2001)

    Article  MATH  Google Scholar 

  12. Bueso J.L., Gómez-Torrecillas J., Lobillo F.J., Castro-Jiménez F.J.: An introduction to effective calculus in quantum groups. In: Caenepeel, S., Verschoren, A. (eds) Rings, Hopf Algebras, and Brauer Groups. Lecture Notes in Pure and Applied Mathematics, vol. 197, pp. 55–83. Marcel Dekker, New York (1998)

    Google Scholar 

  13. Bueso J.L., Gómez-Torrecillas J., Verschoren A.: Algorithmic Methods in Non-Commutative Algebra. Mathematical Modelling: Theory and Applications, vol. 17. Kluwer, Dordrecht (2003)

    Google Scholar 

  14. Chen Y.F., Gao X.S.: Involutive directions and new involutive divisions. Comput. Math. Appl. 41, 945–956 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cohn P.M.: Algebra II. John Wiley, London (1977)

    Google Scholar 

  16. Cox D., Little J., O’Shea D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185. Springer, New York (1998)

    Google Scholar 

  17. Drinfeld V.G.: Hopf algebras and the quantum Yang-Baxter equations. Sov. Math. Dokl. 32, 254–258 (1985)

    Google Scholar 

  18. Gerdt V.P.: Completion of linear differential systems to involution. In: Ghanza, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing—CASC’99, pp. 115–137. Springer, Berlin (1999)

    Google Scholar 

  19. Gerdt V.P.: On an algorithmic optimization in computation of involutive bases. Prog. Comput. Softw. 28, 62–65 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gerdt V.P., Blinkov Yu.A.: Involutive bases of polynomial ideals. Math. Comput. Simul. 45, 519–542 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gerdt V.P., Blinkov Yu.A.: Minimal involutive bases. Math. Comput. Simul. 45, 543–560 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gerdt V.P., Blinkov Yu.A., Yanovich D.A.: Construction of Janet bases. I. Monomial bases. In: Ghanza, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing—CASC 2001, pp. 233–247. Springer, Berlin (2001a)

    Google Scholar 

  23. Gerdt V.P., Blinkov Yu.A., Yanovich D.A.: Construction of Janet bases II. In: Polynomialbases. Ghanza, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing—CASC 2001, pp. 249–263. Springer, Berlin (2001b)

    Google Scholar 

  24. Gianni P., Trager B., Zacharias G.: Gröbner bases and primary decomposition of polynomial ideals. J. Symb. Comput. 6, 149–167 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Giesbrecht, M., Reid, G.J. and Zhang, Y.: Non-commutative Gröbner bases in Poincaré–Birkhoff–Witt extensions. In: Ghanza, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing—CASC 2002. Fakultät für Informatik, Technische Universität München (2002)

  26. Gräbe H.-G.: The tangent cone algorithm and homogenization. J. Pure Appl. Alg. 97, 303–312 (1994)

    Article  Google Scholar 

  27. Gräbe H.-G.: Algorithms in local algebra. J. Symb. Comput. 19, 545–557 (1995)

    Article  MATH  Google Scholar 

  28. Greuel G.-M., Pfister G.: Advances and improvements in the theory of standard bases and syzygies. Arch. Math. 66, 163–176 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Greuel G.-M., Pfister G.: A Singular Introduction to Commutative Algebra. Springer, Berlin (2002)

    MATH  Google Scholar 

  30. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 2.0—a computer algebra system for polynomial computations. Technical report, Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de

  31. Hausdorf M., Seiler W.M.: An efficient algebraic algorithm for the geometric completion to involution. Appl. Alg. Eng. Commun. Comput. 13, 163–207 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hausdorf M., Seiler W.M.: Involutive bases in MuPAD. I. Involutive divisions. mathPAD 11, 51–56 (2002)

    Google Scholar 

  33. Hausdorf, M., Seiler, W.M.: Involutive bases in MuPAD. II. Polynomial algebras of solvable type. mathPAD (to appear)

  34. Hausdorf M., Seiler W.M., Steinwandt R.: Involutive bases in the Weyl algebra. J. Symb. Comput. 34, 181–198 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hereman W.: Review of symbolic software for the computation of Lie symmetries of differential equations. Euromath. Bull. 2, 45–82 (1994)

    MathSciNet  Google Scholar 

  36. Janet M.: Sur les systèmes d’équations aux dérivées partielles. J. Math. Pure Appl. 3, 65–151 (1920)

    Google Scholar 

  37. Janet M.: Les modules de formes algébriques et la théorie générale des systèmes différentiels. Ann. École Norm. Sup. 41, 27–65 (1924)

    MathSciNet  Google Scholar 

  38. Janet, M.: Leçons sur les Systèmes d’Équations aux D érivées Partielles. Cahiers Scientifiques, Fascicule IV. Gauthier-Villars, Paris (1929)

  39. Jimbo M.: A q-difference analogue of \({U(\mathfrak{g})}\) and the Yang-Baxter equations. Lett. Math. Phys. 10, 63–69 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kandry-Rody A., Weispfenning V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comput. 9, 1–26 (1990)

    Article  Google Scholar 

  41. Kredel H.: Solvable Polynomial Rings. Verlag Shaker, Aachen (1993)

    MATH  Google Scholar 

  42. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed) Proc. EUROCAL ’83. Lecture Notes in Computer Science, vol. 162, pp. 146–156. Springer, Berlin (1983)

  43. Levandovskyy, V.: On Gröbner bases for non-commutative G-algebras. In: Calmet, J., Hausdorf, M., Seiler, W.M. (eds.) Proc. Under- and Overdetermined Systems of Algebraic or Differential Equations, pp. 99–118. Fakultät für Informatik, Universität Karlsruhe (2002)

  44. Levandovskyy, V.: Non-commutative computer algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, Fachbereich Mathematik, Universität Kaiserslautern (2005)

  45. McConnell J.C., Robson J.C.: Non-commutative Noetherian Rings. Wiley, New York (1987)

    Google Scholar 

  46. Méray C., Riquier C.: Sur la convergence des développements des intégrales ordinaires d’un système d’équations différentielles partielles. Ann. Sci. Ec. Norm. Sup. 7, 23–88 (1890)

    Google Scholar 

  47. Miller E., Sturmfels B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)

    Google Scholar 

  48. Mora, T.: An algorithm to compute the equations of tangent cones. In: Calmet, J.(ed.) Proc. EUROCAM ’82. Lecture Notes in Computer Science, vol. 144, pp. 158–165. Springer, Berlin (1982)

  49. Noether E., Schmeidler W.: Moduln in nichtkommutativen Bereichen, insbesondere aus Differential- und Differenzausdrücken. Math. Zeit. 8, 1–35 (1920)

    Article  MathSciNet  Google Scholar 

  50. Ore O.: Linear equations in non-commutative fields. Ann. Math. 32, 463–477 (1931)

    Article  MathSciNet  Google Scholar 

  51. Ore O.: Theory of non-commutative polynomials. Ann. Math. 34, 480–508 (1933)

    Article  MathSciNet  Google Scholar 

  52. Riquier C.: Les Systèmes d’Équations aux Derivées Partielles. Gauthier-Villars, Paris (1910)

    Google Scholar 

  53. Saito M., Sturmfels B., Takayama N.: Gröbner Deformations of Hypergeometric Differential Equations Algorithms and Computation in Mathematics, vol. 6. Springer, Berlin (2000)

    Google Scholar 

  54. Seiler, W.M.: Involution—The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2009, to appear)

  55. Sturmfels B., White N.: Computing combinatorial decompositions of rings. Combinatorica 11, 275–293 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  56. Thomas J.M.: Differential Systems. Colloquium Publications XXI. American Mathematical Society, New York (1937)

    Google Scholar 

  57. Tresse A.: Sur les invariants différentiels des groupes continus de transformations. Acta Math. 18, 1–88 (1894)

    Article  MathSciNet  Google Scholar 

  58. Trinks W.: Über B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lösen. J. Num. Th. 10, 475–488 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  59. Varadarajan V.S.: Lie Groups, Lie Algebras, and their Representations. Graduate Texts in Mathematics, vol. 102. Springer, New York (1984)

    Google Scholar 

  60. Wu W.T.: On the construction of Gröbner basis of a polynomial ideal based on Riquier–Janet theory. Syst. Sci. Math. Sci. 4, 194–207 (1991)

    Google Scholar 

  61. Zharkov A.Yu., Blinkov Yu.A.: Involution approach to solving systems of algebraic equations. In: Jacob, G., Oussous, N.E., Steinberg, S. (eds) Proc. Int. IMACS Symp. Symbolic Computation, pp. 11–17. Lille, France (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner M. Seiler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, W.M. A combinatorial approach to involution and δ-regularity I: involutive bases in polynomial algebras of solvable type. AAECC 20, 207–259 (2009). https://doi.org/10.1007/s00200-009-0098-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-009-0098-0

Keywords

Navigation