Skip to main content

Advertisement

Log in

Nephrolithiasis, bone mineral density, osteoporosis, and fractures: a systematic review and comparative meta-analysis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Our meta-analysis demonstrates that people with nephrolithiasis have decreased bone mineral density, an increased odds of osteoporosis, and potentially an elevated risk of fractures.

Introduction

People with nephrolithiasis might be at risk of reduced bone mineral density (BMD) and fractures, but the data is equivocal. We conducted a meta-analysis to investigate if patients with nephrolithiasis have worse bone health outcomes (BMD), osteoporosis, and fractures versus healthy controls (HCs).

Methods

Two investigators searched major databases for articles reporting BMD (expressed as g/cm2 or a T- or Z-score), osteoporosis or fractures in a sample of people with nephrolithiasis, and HCs. Standardized mean differences (SMDs), 95 % confidence intervals (CIs) were calculated for BMD parameters; in addition odds (ORs) for case-control and adjusted hazard ratios (HRs) in longitudinal studies for categorical variables were calculated.

Results

From 1816 initial hits, 28 studies were included. A meta-analysis of case-control studies including 1595 patients with nephrolithiasis (mean age 41.1 years) versus 3402 HCs (mean age 40.2 years) was conducted. Patients with nephrolithiasis showed significant lower T-scores values for the spine (seven studies; SMD = −0.69; 95 % CI = −0.86 to −0.52; I 2 = 0 %), total hip (seven studies; SMD = −0.82; 95 % CI = −1.11 to −0.52; I 2 = 72 %), and femoral neck (six studies; SMD = −0.67; 95 % CI = −−1.00 to −0.34; I 2 = 69 %). A meta-analysis of the case-controlled studies suggests that people with nephrolithiasis are at increased risk of fractures (OR = 1.15, 95 % CI = 1.12–1.17, p < 0.0001, studies = 4), while the risk of fractures in two longitudinal studies demonstrated trend level significance (HR = 1.31, 95 % CI = 0.95–1.62). People with nephrolithiasis were four times more likely to have osteoporosis than HCs (OR = 4.12, p < 0.0001).

Conclusions

Nephrolithiasis is associated with lower BMD, an increased risk of osteoporosis, and possibly, fractures. Future screening/preventative interventions targeting bone health might be indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masi L (2008) Epidemiology of osteoporosis. Clin Cases Miner Bone Metab 5:11–3

    PubMed  PubMed Central  Google Scholar 

  2. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–33. doi:10.1007/s00198-006-0172-4

    Article  CAS  PubMed  Google Scholar 

  3. Sakhaee K, Maalouf NM, Kumar R et al (2011) Nephrolithiasis-associated bone disease: pathogenesis and treatment options. Kidney Int 79:393–403. doi:10.1038/ki.2010.473

    Article  CAS  PubMed  Google Scholar 

  4. Melton LJ, Crowson CS, Khosla S et al (1998) Fracture risk among patients with urolithiasis: a population-based cohort study. Kidney Int 53:459–64. doi:10.1046/j.1523-1755.1998.00779.x

    Article  PubMed  Google Scholar 

  5. Lawoyin S, Sismilich S, Browne R, Pak CY (1979) Bone mineral content in patients with calcium urolithiasis. Metabolism 28:1250–4

    Article  CAS  PubMed  Google Scholar 

  6. Ou S-M, Chen Y-T, Shih C-J, Tarng D-C (2015) Increased risk of bone fracture among patients with urinary calculi: a nationwide longitudinal population-based study. Osteoporos Int 26:1261–9. doi:10.1007/s00198-014-2998-5

    Article  PubMed  Google Scholar 

  7. Vosburgh E, Peters TJ (1987) Pathogenesis of idiopathic hypercalciuria: a review. J R Soc Med 80:34–7

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Giannini S, Nobile M, Dalle Carbonare L et al (2003) Hypercalciuria is a common and important finding in postmenopausal women with osteoporosis. Eur J Endocrinol 149:209–13

    Article  CAS  PubMed  Google Scholar 

  9. Cerdá Gabaroi D, Peris P, Monegal A et al (2010) Search for hidden secondary causes in postmenopausal women with osteoporosis. Menopause 17:135–9. doi:10.1097/gme.0b013e3181ade8e5

    Article  PubMed  Google Scholar 

  10. Thorleifsson G, Holm H, Edvardsson V et al (2009) Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 41:926–30. doi:10.1038/ng.404

    Article  CAS  PubMed  Google Scholar 

  11. Rebsamen MC, Sun J, Norman AW, Liao JK (2002) 1alpha,25-dihydroxyvitamin D3 induces vascular smooth muscle cell migration via activation of phosphatidylinositol 3-kinase. Circ Res 91:17–24

    Article  CAS  PubMed  Google Scholar 

  12. Trinchieri A (2005) Bone mineral content in calcium renal stone formers. Urol Res 33:247–53. doi:10.1007/s00240-005-0498-y

    Article  CAS  PubMed  Google Scholar 

  13. Fuss M, Pepersack T, Van Geel J et al (1990) Involvement of low-calcium diet in the reduced bone mineral content of idiopathic renal stone formers. Calcif Tissue Int 46:9–13

    Article  CAS  PubMed  Google Scholar 

  14. Trinchieri A, Nespoli R, Ostini F et al (1998) A study of dietary calcium and other nutrients in idiopathic renal calcium stone formers with low bone mineral content. J Urol 159:654–7

    Article  CAS  PubMed  Google Scholar 

  15. von Elm E, Altman DG, Egger M et al (2008) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 61:344–349. doi:10.1016/j.jclinepi.2007.11.008

    Article  Google Scholar 

  16. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100. doi:10.1371/journal.pmed.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  17. IQ solutions I bone mass measurement: what the numbers mean

  18. Wells G, Shea B, O’Connell D et al (2012) The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. (Available from URL http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp) 2012. doi: 10.2307/632432

  19. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188. doi:10.1016/0197-2456(86)90046-2

    Article  CAS  PubMed  Google Scholar 

  20. Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. doi:10.1002/sim.1186

    Article  PubMed  Google Scholar 

  21. Sella S, Cattelan C, Realdi G, Giannini S (2008) Bone disease in primary hypercalciuria. Clin Cases Miner Bone Metab 5:118–26

    PubMed  PubMed Central  Google Scholar 

  22. Giannini S, Nobile M, Sella S, Dalle Carbonare L (2005) Bone disease in primary hypercalciuria. Crit Rev Clin Lab Sci 42:229–48. doi:10.1080/10408360590913533

    Article  CAS  PubMed  Google Scholar 

  23. Tasca A, Dalle Carbonare L, Nigro F, Giannini S (2009) Bone disease in patients with primary hypercalciuria and calcium nephrolithiasis. Urology 74:22–7. doi:10.1016/j.urology.2008.11.014

    Article  PubMed  Google Scholar 

  24. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101. doi:10.2307/2533446

    Article  CAS  PubMed  Google Scholar 

  25. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. doi:10.1136/bmj.316.7129.469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arrabal-Polo MA, Arrabal-Martin M, Girón-Prieto MS et al (2012) Osteopenia/osteoporosis in patients with calcium nephrolithiasis. Urol Res 40:709–716. doi:10.1007/s00240-012-0497-8

    Article  PubMed  Google Scholar 

  27. Arrabal-Polo MA, Arrabal-Martin M, Arias-Santiago S (2013) Bone and metabolic markers in women with recurrent calcium stones. Korean J Urol 54:177–182. doi:10.4111/kju.2013.54.3.177

    Article  PubMed  PubMed Central  Google Scholar 

  28. Arrabal-Polo MA, Girón-Prieto MS, del Carmen Cano-García M et al (2015) Retrospective review of serum and urinary lithogenic risk factors in patients with osteoporosis and osteopenia. Urology 85:782–785. doi:10.1016/j.urology.2015.01.019

    Article  PubMed  Google Scholar 

  29. Asplin JR, Bauer KA, Kinder J et al (2003) Bone mineral density and urine calcium excretion among subjects with and without nephrolithiasis. Kidney Int 63:662–669. doi:10.1046/j.1523-1755.2003.00763.x

    Article  CAS  PubMed  Google Scholar 

  30. Carbone LD, Hovey KM, Andrews CA et al (2015) Urinary tract stones and osteoporosis: findings from the women’s health initiative. J Bone Miner Res 30:2096–2102. doi:10.1002/jbmr.2553

    Article  PubMed  Google Scholar 

  31. Celik A, Davutoglu V, Sarica K et al (2010) Relationship between renal stone formation, mitral annular calcification and bone resorption markers. Ann Saudi Med 30:301–305. doi:10.4103/0256-4947.65264

    Article  PubMed  PubMed Central  Google Scholar 

  32. Denburg MR, Leonard MB, Haynes K et al (2014) Risk of fracture in urolithiasis: a population-based cohort study using the health improvement network. Clin J Am Soc Nephrol 1–8. doi: 10.2215/CJN.04340514

  33. Camille B, Christophe B, Yvon B et al (2012) Electrolyte disorders/nephrolithiasis. Nephrol Dial Transplant 27:ii178–ii181. doi:10.1093/ndt/gfs222

    Article  Google Scholar 

  34. Ghazali A, Fuentès V, Desaint C et al (1997) Low bone mineral density and peripheral blood monocyte activation profile in calcium stone formers with idiopathic hypercalciuria. J Clin Endocrinol Metab 82:32–8

    CAS  PubMed  Google Scholar 

  35. Guerra, Angela Nouvenne, Antonio Pedrazzoni, Michele Meschi T (2009) Guerra, 2009 abstract.pdf. In: Eff. body Compos. bone density Heal. Women with idiopathic calcium nephrolithiasis. p 81

  36. Heilberg IP, Martini LA, Szejnfeld VL et al (1994) Bone disease in calcium stone forming patients. Clin Nephrol 42:175–82

    CAS  PubMed  Google Scholar 

  37. Hekimsoy Z, Biberoglu S, Kazimoglu H et al (2003) Bone mineral density and biochemical markers of bone in patients with idiopathic hypercalciuria. Endocrinologist 13:417–421. doi:10.1097/01.ten.0000089863.23074.23

    Article  Google Scholar 

  38. Jaeger P, Lippuner K, Casez JP et al (1994) Low bone mass in idiopathic renal stone formers: magnitude and significance. 9

  39. Kaste SC, Thomas NA, Rai SN et al (2009) Asymptomatic kidney stones in long-term survivors of childhood acute lymphoblastic leukemia. Leuk Off J Leuk Soc Am Leuk Res Fund UK 23:104–108. doi:10.1038/leu.2008.269

    Article  CAS  Google Scholar 

  40. Keller JJ, Lin CC, Kang JH, Lin HC (2013) Association between osteoporosis and urinary calculus: evidence from a population-based study. Osteoporos Int 24:651–657. doi:10.1007/s00198-012-2019-5

    Article  CAS  PubMed  Google Scholar 

  41. Mete U, Garg PR, Prakash M, Dutta P (2015) Pd4-02 should bone mineral density (BMD) be included in the metabolic evaluation of young adults with calcium kidney stone disease?: a prospective study. J Urol 193:e87. doi:10.1016/j.juro.2015.02.314

    Article  Google Scholar 

  42. Moyano MJ, Tejada MJG De, Lozano RG et al (2007) Alteraciones en el metabolismo mineral óseo en pacientes con urolitiasis de repetición y polimorfismos del gen del receptor de la vitamina D . Resultados preliminares

  43. Pricop C (2014) Particularities of bone metabolism and calcium regulators in a group of young males with idiopathic hypercalciuria and relapsing kidney lithiasis. Acta Endocrinol 10:220–227. doi:10.4183/aeb.2014.220

    Google Scholar 

  44. Weisinger JR, Alonzo E, Bellorin-Font E et al (1996) Possible role of cytokines on the bone mineral loss in idiopathic hypercalciuria. Kidney Int 49:244–250

    Article  CAS  PubMed  Google Scholar 

  45. Wong P, Fuller PJ, Gillespie MT et al (2013) Thalassemia bone disease: the association between nephrolithiasis, bone mineral density and fractures. Osteoporos Int 24:1965–71. doi:10.1007/s00198-012-2260-y

    Article  CAS  PubMed  Google Scholar 

  46. Zanchetta JR, Rodriguez G, Negri AL et al (1996) Bone mineral density in patients with hypercalciuric nephrolithiasis. Nephron 73:557–560

    CAS  PubMed  Google Scholar 

  47. Borowy P, Czerwinski E, Gorna A (2011) BMD in postmenopausal women with nephrolithiasis: 5-10-year observations. Osteoporos Int 22(Suppl 1):S218. doi:10.1007/s00198-011-1567-4

  48. Tasca A, Cacciola A, Ferrarese P et al (2002) Bone alterations in patients with idiopathic hypercalciuria and calcium nephrolithiasis. Urology 59:865–9, discussion 869

    Article  CAS  PubMed  Google Scholar 

  49. Cvijetic S, Füredi-milhofer H, Babic-ivancic V, Tucak A (2002) Bone mineral density loss in patients with urolithiasis: a follow-up study. 33:152–157

  50. Bijelic R, Balaban M, Milicevic S (2015) Gender representation of osteoporosis in patients with urolithiasis. Med Arch (Sarajevo, Bosnia Herzegovina) 69:331–333. doi:10.5455/medarh.2015.69.331-333

    Google Scholar 

  51. Tugcu V, Ozbek E, Aras B et al (2007) Bone mineral density measurement in patients with recurrent normocalciuric calcium stone disease. Urol Res 35:29–34. doi:10.1007/s00240-006-0074-0

    Article  CAS  PubMed  Google Scholar 

  52. Tsuji H, Umekawa T, Kurita T et al (2005) Analysis of bone mineral density in urolithiasis patients. Int J Urol 12:335–339. doi:10.1111/j.1442-2042.2005.01049.x

    Article  PubMed  Google Scholar 

  53. Bijelic R, Milicevic S, Balaban J (2014) Incidence of osteoporosis in patients with urolithiasis. Med Arch 68:335. doi:10.5455/medarh.2014.68.335-338

    Article  PubMed  PubMed Central  Google Scholar 

  54. Arrabal-Polo MA, Arrabal-Martin M, Arias-Santiago S et al (2012) Metabolic-mineral study in patients with renal calcium lithiasis, severe lithogenic activity and loss of bone mineral density. Singap Med J 53:808–13

    Google Scholar 

  55. Letavernier E, Traxer O, Daudon M et al (2011) Determinants of osteopenia in male renal-stone-disease patients with idiopathic hypercalciuria. Clin J Am Soc Nephrol 6:1149–54. doi:10.2215/CJN.10191110

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tannenbaum C, Clark J, Schwartzman K et al (2002) Yield of laboratory testing to identify secondary contributors to osteoporosis in otherwise healthy women. J Clin Endocrinol Metab 87:4431–7. doi:10.1210/jc.2002-020275

    Article  CAS  PubMed  Google Scholar 

  57. Eller-Vainicher C, Cairoli E, Zhukouskaya VV et al (2013) Prevalence of subclinical contributors to low bone mineral density and/or fragility fracture. Eur J Endocrinol 169:225–37. doi:10.1530/EJE-13-0102

    Article  CAS  PubMed  Google Scholar 

  58. Bordier P, Ryckewart A, Gueris J, Rasmussen H (1977) On the pathogenesis of so-called idiopathic hypercalciuria. Am J Med 63:398–409

    Article  CAS  PubMed  Google Scholar 

  59. Vezzoli G, Rubinacci A, Bianchin C et al (2003) Intestinal calcium absorption is associated with bone mass in stone-forming women with idiopathic hypercalciuria. Am J Kidney Dis 42:1177–83

    Article  PubMed  Google Scholar 

  60. Vezzoli G, Arcidiacono T, Paloschi V et al (2008) Update on the genetics of nephrolithiasis. Clin Cases Miner Bone Metab 5:110–3

    PubMed  PubMed Central  Google Scholar 

  61. Tebben PJ, Milliner DS, Horst RL et al (2012) Hypercalcemia, hypercalciuria, and elevated calcitriol concentrations with autosomal dominant transmission due to CYP24A1 mutations: effects of ketoconazole therapy. J Clin Endocrinol Metab 97:E423–7. doi:10.1210/jc.2011-1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reed BY, Gitomer WL, Heller HJ et al (2002) Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J Clin Endocrinol Metab 87:1476–85. doi:10.1210/jcem.87.4.8300

    Article  CAS  PubMed  Google Scholar 

  63. Geng W, Hill K, Zerwekh JE et al (2009) Inhibition of osteoclast formation and function by bicarbonate: role of soluble adenylyl cyclase. J Cell Physiol 220:332–40. doi:10.1002/jcp.21767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Prié D, Beck L, Friedlander G, Silve C (2004) Sodium-phosphate cotransporters, nephrolithiasis and bone demineralization. Curr Opin Nephrol Hypertens 13:675–81

    Article  PubMed  Google Scholar 

  65. Tsao K-C, Wu T-L, Chang P-Y et al (2007) Multiple risk markers for atherogenesis associated with chronic inflammation are detectable in patients with renal stones. J Clin Lab Anal 21:426–31. doi:10.1002/jcla.20215

    Article  PubMed  Google Scholar 

  66. Lacey DL, Grosso LE, Moser SA et al (1993) IL-1-induced murine osteoblast IL-6 production is mediated by the type 1 IL-1 receptor and is increased by 1,25 dihydroxyvitamin D3. J Clin Invest 91:1731–42. doi:10.1172/JCI116383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jackson RD, LaCroix AZ, Gass M et al (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354:669–83. doi:10.1056/NEJMoa055218

    Article  CAS  PubMed  Google Scholar 

  68. Heaney RP (2008) Calcium supplementation and incident kidney stone risk: a systematic review. J Am Coll Nutr 27:519–27

    Article  CAS  PubMed  Google Scholar 

  69. Curhan GC, Willett WC, Speizer FE, Stampfer MJ (2001) Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int 59:2290–8. doi:10.1046/j.1523-1755.2001.00746.x

    Article  CAS  PubMed  Google Scholar 

  70. Borghi L, Schianchi T, Meschi T et al (2002) Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med 346:77–84. doi:10.1056/NEJMoa010369

    Article  CAS  PubMed  Google Scholar 

  71. Nouvenne A, Meschi T, Guerra A et al (2008) Dietary treatment of nephrolithiasis. Clin Cases Miner Bone Metab 5:135–41

    PubMed  PubMed Central  Google Scholar 

  72. Marckmann P, Osther P, Pedersen AN, Jespersen B (2015) High-protein diets and renal health. J Ren Nutr 25:1–5. doi:10.1053/j.jrn.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  73. Heaney RP, Layman DK (2008) Amount and type of protein influences bone health. Am J Clin Nutr 87:1567S–1570

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Antonio Nouvenne and Prof. Tiziana Meschi, University of Parma, Italy, for giving us their data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Veronese.

Ethics declarations

Financial disclosure

None of the authors have any financial arrangements, organizational affiliations or other relationships that might give rise to any conflict of interest regarding the subject matter of the submitted manuscript.

Conflicts of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 25 kb)

Supplementary Figure 1

(DOCX 62 kb)

Supplementary Figure 2

(DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucato, P., Trevisan, C., Stubbs, B. et al. Nephrolithiasis, bone mineral density, osteoporosis, and fractures: a systematic review and comparative meta-analysis. Osteoporos Int 27, 3155–3164 (2016). https://doi.org/10.1007/s00198-016-3658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3658-8

Keywords

Navigation