Skip to main content

Advertisement

Log in

Trabecular bone score as a skeletal fragility index in acromegaly patients

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Lumbar spine trabecular bone score (TBS) was significantly decreased in active acromegaly patients. TBS may be useful to assess the skeletal fragility in acromegaly in which bone mineral density (BMD) is not sufficient to represent bone strength and explain the high incidence of fragility fractures in acromegaly patients.

Introduction

Although the data on BMD are controversial, patients with acromegaly have an increased risk of fragility fracture. We examined the lumbar spine TBS to explain the skeletal deterioration in acromegaly patients.

Methods

We included 14 men and 19 women acromegaly patients who underwent dual-energy X-ray absorptiometry at the time of diagnosis from 2000 to 2014 at Seoul National University Hospital. Ninety-nine age-, sex- and body mass index-matched controls were recruited. Biochemical parameters, lumbar spine TBS, and BMD at all sites were measured. Gonadal status was evaluated at diagnosis.

Results

Lumbar spine TBS was lower in acromegaly patients than in controls in both genders (1.345 ± 0.121 vs. 1.427 ± 0.087, P = 0.005 in men; 1.356 ± 0.082 vs. 1.431 ± 0.071, P = 0.001 in women). In contrast, BMD at all sites did not differ between the two groups. Hypogonadal acromegaly patients (men, n = 9; women, n = 12) had lower TBS values compared with controls both in men and women (all P < 0.05), although BMD at all sites were similar for the two groups. In eugonadal acromegaly patients, lumbar spine TBS was lower than in women controls only (P = 0.041).

Conclusions

Skeletal microarchitecture was deteriorated in acromegaly patients as assessed by TBS, which seems to be a consequence of growth hormone excess as well as hypogonadism, especially in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Monson JP, Drake WM, Carroll PV, Weaver JU, Rodriguez-Arnao J, Savage MO (2002) Influence of growth hormone on accretion of bone mass. Horm Res 58(Suppl 1):52–56

    CAS  PubMed  Google Scholar 

  2. Baroncelli GI, Bertelloni S, Sodini F, Saggese G (2003) Acquisition of bone mass in normal individuals and in patients with growth hormone deficiency. J Pediatr Endocrinol Metab 16(Suppl 2):327–335

    PubMed  Google Scholar 

  3. Seeman E (2003) Periosteal bone formation—a neglected determinant of bone strength. N Engl J Med 349:320–323

    Article  PubMed  Google Scholar 

  4. Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 29:535–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosen T, Wilhelmsen L, Landin-Wilhelmsen K, Lappas G, Bengtsson BA (1997) Increased fracture frequency in adult patients with hypopituitarism and GH deficiency. Eur J Endocrinol 137:240–245

    Article  CAS  PubMed  Google Scholar 

  6. Wuster C, Abs R, Bengtsson BA, Bennmarker H, Feldt-Rasmussen U, Hernberg-Stahl E, Monson JP, Westberg B, Wilton P (2001) The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. J Bone Miner Res 16:398–405

    Article  CAS  PubMed  Google Scholar 

  7. Johannsson G, Rosen T, Bosaeus I, Sjostrom L, Bengtsson BA (1996) Two years of growth hormone (GH) treatment increases bone mineral content and density in hypopituitary patients with adult-onset GH deficiency. J Clin Endocrinol Metab 81:2865–2873

    CAS  PubMed  Google Scholar 

  8. Brixen K, Hansen TB, Hauge E, Vahl N, Jorgensen JO, Christiansen JS, Mosekilde L, Hagen C, Melsen F (2000) Growth hormone treatment in adults with adult-onset growth hormone deficiency increases iliac crest trabecular bone turnover: a 1-year, double-blind, randomized, placebo-controlled study. J Bone Miner Res 15:293–300

    Article  CAS  PubMed  Google Scholar 

  9. Tamada D, Kitamura T, Onodera T, Tabuchi Y, Fukuhara A, Oshino S, Saitoh Y, Hamasaki T, Otsuki M, Shimomura I (2014) Rapid decline in bone turnover markers but not bone mineral density in acromegalic patients after transsphenoidal surgery. Endocr J 61:231–237

    Article  PubMed  Google Scholar 

  10. Wassenaar MJ, Biermasz NR, Hamdy NA et al (2011) High prevalence of vertebral fractures despite normal bone mineral density in patients with long-term controlled acromegaly. Eur J Endocrinol 164:475–483

    Article  CAS  PubMed  Google Scholar 

  11. Mazziotti G, Bianchi A, Porcelli T, Mormando M, Maffezzoni F, Cristiano A, Giampietro A, De Marinis L, Giustina A (2013) Vertebral fractures in patients with acromegaly: a 3-year prospective study. J Clin Endocrinol Metab 98:3402–3410

    Article  CAS  PubMed  Google Scholar 

  12. Kaji H, Sugimoto T, Nakaoka D, Okimura Y, Kaji H, Abe H, Chihara K (2001) Bone metabolism and body composition in Japanese patients with active acromegaly. Clin Endocrinol (Oxf) 55:175–181

    Article  CAS  Google Scholar 

  13. Bolanowski M, Daroszewski J, Medras M, Zadrozna-Sliwka B (2006) Bone mineral density and turnover in patients with acromegaly in relation to sex, disease activity, and gonadal function. J Bone Miner Metab 24:72–78

    Article  PubMed  Google Scholar 

  14. Kayath MJ, Vieira JG (1997) Osteopenia occurs in a minority of patients with acromegaly and is predominant in the spine. Osteoporos Int 7:226–230

    Article  CAS  PubMed  Google Scholar 

  15. Lesse GP, Fraser WD, Farquharson R, Hipkin L, Vora JP (1998) Gonadal status is an important determinant of bone density in acromegaly. Clin Endocrinol (Oxf) 48:59–65

    Article  CAS  Google Scholar 

  16. Zgliczynski W, Kochman M, Misiorowski W, Zdunowski P (2007) In acromegaly, increased bone mineral density (BMD) is determined by GH-excess, gonadal function and gender. Neuro Endocrinol Lett 28:621–628

    CAS  PubMed  Google Scholar 

  17. Mazziotti G, Biagioli E, Maffezzoni F, Spinello M, Serra V, Maroldi R, Floriani I, Giustina A (2015) Bone turnover, bone mineral density, and fracture risk in acromegaly: a meta-analysis. J Clin Endocrinol Metab 100:384–394

    Article  CAS  PubMed  Google Scholar 

  18. Madeira M, Neto LV, de Paula Paranhos Neto F, Barbosa Lima IC, Carvalho de Mendonca LM, Gadelha MR, Fleiuss de Farias ML (2013) Acromegaly has a negative influence on trabecular bone, but not on cortical bone, as assessed by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 98:1734–1741

    Article  CAS  PubMed  Google Scholar 

  19. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29:518–530

    Article  PubMed  Google Scholar 

  20. Bousson V, Bergot C, Sutter B, Levitz P, Cortet B (2012) Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int 23:1489–1501

    Article  CAS  PubMed  Google Scholar 

  21. Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, Wass JA (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99:3933–3951

    Article  CAS  PubMed  Google Scholar 

  22. Melmed S, Colao A, Barkan A, Molitch M, Grossman AB, Kleinberg D, Clemmons D, Chanson P, Laws E, Schlechte J, Vance ML, Ho K, Giustina A (2009) Guidelines for acromegaly management: an update. J Clin Endocrinol Metab 94:1509–1517

    Article  CAS  PubMed  Google Scholar 

  23. Growth Hormone Research Society; Pituitary Society (2004) Biochemical assessment and long-term monitoring in patients with acromegaly: statement from a joint consensus conference of the Growth Hormone Research Society and the Pituitary Society. J Clin Endocrinol Metab 89:3099-3102

  24. Madeira M, Neto LV, Torres CH, de Mendonca LM, Gadelha MR, de Farias ML (2013) Vertebral fracture assessment in acromegaly. J Clin Densitom 16:238–243

    Article  PubMed  Google Scholar 

  25. Diamond T, Nery L, Posen S (1989) Spinal and peripheral bone mineral densities in acromegaly: the effects of excess growth hormone and hypogonadism. Ann Intern Med 111:567–573

    Article  CAS  PubMed  Google Scholar 

  26. Tutuncu NB, Erbas T (2004) Factors associated with bone metabolism in acromegalic patients: hypogonadism and female gender. Exp Clin Endocrinol Diabetes 112:328–332

    Article  CAS  PubMed  Google Scholar 

  27. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  CAS  PubMed  Google Scholar 

  28. Nicks KM, Amin S, Atkinson EJ, Riggs BL, Melton LJ 3rd, Khosla S (2012) Relationship of age to bone microstructure independent of areal bone mineral density. J Bone Miner Res 27:637–644

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res 25:882–890

    PubMed  Google Scholar 

  30. Pedrazzoni M, Casola A, Verzicco I, Abbate B, Vescovini R, Sansoni P (2014) Longitudinal changes of trabecular bone score after estrogen deprivation: effect of menopause and aromatase inhibition. J Endocrinol Invest 37:871–874

    Article  CAS  PubMed  Google Scholar 

  31. Kalder M, Hans D, Kyvernitakis I, Lamy O, Bauer M, Hadji P (2014) Effects of Exemestane and Tamoxifen treatment on bone texture analysis assessed by TBS in comparison with bone mineral density assessed by DXA in women with breast cancer. J Clin Densitom 17:66–71

    Article  PubMed  Google Scholar 

  32. Ueland T, Ebbesen EN, Thomsen JS, Mosekilde L, Brixen K, Flyvbjerg A, Bollerslev J (2002) Decreased trabecular bone biomechanical competence, apparent density, IGF-II and IGFBP-5 content in acromegaly. Eur J Clin Invest 32:122–128

    Article  CAS  PubMed  Google Scholar 

  33. Ho PJ, Fig LM, Barkan AL, Shapiro B (1992) Bone mineral density of the axial skeleton in acromegaly. J Nucl Med 33:1608–1612

    CAS  PubMed  Google Scholar 

  34. Kotzmann H, Bernecker P, Hubsch P, Pietschmann P, Woloszczuk W, Svoboda T, Geyer G, Luger A (1993) Bone mineral density and parameters of bone metabolism in patients with acromegaly. J Bone Miner Res 8:459–465

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Shin.

Ethics declarations

Conflicts of interest

None.

Additional information

A. R. Hong and J. H. Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, A.R., Kim, J.H., Kim, S.W. et al. Trabecular bone score as a skeletal fragility index in acromegaly patients. Osteoporos Int 27, 1123–1129 (2016). https://doi.org/10.1007/s00198-015-3344-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3344-2

Keywords

Navigation