Skip to main content
Log in

Effect of whole-body vibration training on bone mass in adolescents with and without Down syndrome: a randomized controlled trial

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Whole-body vibration training (WBV) attracts great interest as osteoporosis prevention strategy. Twenty-six adolescents with and without Down syndrome (DS) (13 DS; 12–18 years) performed 20 weeks of WBV. The results indicate that WBV seems to provoke a lesser response in adolescents with DS than in those without DS.

Introduction

This study aims to observe the differences between adolescents with and without DS in the effects of 20 weeks of WBV training, on bone mineral content (BMC) and density (BMD).

Methods

Twenty-six adolescents (13 DS; 12–18 years) were measured with dual-energy X-ray absorptiometry before and after the intervention (3/week, 10 repetitions (30–60 s) and 1-min rest, frequency 25–30 Hz and peak-to-peak displacement of 2 mm (peak acceleration 2.5–3.6 g)). Both, an intention-to-treat (ITT) analysis designed to assess the effects on bone mass and a per-protocol analysis, designed to compare poor and high compliers, were performed.

Results

The ITT analysis revealed significant increases in all BMC and BMD parameters (dz = 0.66 to 1.64; all p < 0.05) in the non-DS group, whilst DS group improved whole-body, subtotal (whole-body less head), upper limbs (ULIMBS), pelvis, lower limbs (LLIMBS) and spine BMC (dz = 0.75 to 1.76; all p < 0.05) and subtotal, pelvis, LLIMBS and spine BMD (dz = 0.73 to 1.28; all p < 0.05). Significantly greater increases were evident in the absolute and percent changes of the non-DS group over DS group (d = 0.88 to 3.85; all p < 0.05). ULIMBS BMD showed a tendency towards an interaction (f = 0.41 and p = 0.086) with higher increase for non-DS group. When a per-protocol analysis was considered, high-complier adolescents had 8.1 versus 5.3 % of gains in the spine BMC over poor-complier adolescents (d = 0.93; p < 0.05).

Conclusions

Twenty weeks of WBV training may improve BMC and BMD in clinically relevant skeletal sites in both groups. Nevertheless, this type of training seems to provoke a lesser response in adolescents with DS than in those without DS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bittles AH, Glasson EJ (2004) Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol 46:282–286

    Article  PubMed  CAS  Google Scholar 

  2. [no author listed] (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646-650.

  3. Sakadamis A, Angelopoulou N, Matziari C, Papameletiou V, Souftas V (2002) Bone mass, gonadal function and biochemical assessment in young men with trisomy 21. Eur J Obstet Gynecol Reprod Biol 100:208–212

    Article  PubMed  CAS  Google Scholar 

  4. Baptista F, Varela A, Sardinha LB (2005) Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int 16:380–388

    Article  PubMed  Google Scholar 

  5. González-Agüero A, Vicente-Rodríguez G, Moreno LA, Casajús JA (2011) Bone mass in male and female children and adolescents with Down syndrome. Osteoporos Int 22:2151–2157

    Article  PubMed  Google Scholar 

  6. Guijarro M, Valero C, Paule B, Gonzalez-Macias J, Riancho JA (2008) Bone mass in young adults with Down syndrome. J Intellect Disabil Res 52:182–189

    Article  PubMed  CAS  Google Scholar 

  7. Angelopoulou N, Souftas V, Sakadamis A, Mandroukas K (1999) Bone mineral density in adults with Down's syndrome. Eur Radiol 9:648–651

    Article  PubMed  CAS  Google Scholar 

  8. Geijer JR, Stanish HI, Draheim CC, Dengel DR (2014) Bone mineral density in adults with Down syndrome, intellectual disability, and nondisabled adults. Am J Intellect Dev Disabil 119:107–114

    Article  PubMed  Google Scholar 

  9. Lips P (1997) Epidemiology and predictors of fractures associated with osteoporosis. Am J Med 103:3S–8S, discussion 8S-11S

    Article  PubMed  CAS  Google Scholar 

  10. McKelvey KD, Fowler TW, Akel NS, Kelsay JA, Gaddy D, Wenger GR, Suva LJ (2013) Low bone turnover and low bone density in a cohort of adults with Down syndrome. Osteoporos Int 24:1333–1338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Bauman AE (2004) Updating the evidence that physical activity is good for health: an epidemiological review 2000-2003. J Sci Med Sport 7:6–19

    Article  PubMed  CAS  Google Scholar 

  12. Vicente-Rodriguez G (2006) How does exercise affect bone development during growth? Sports Med 36:561–569

    Article  PubMed  Google Scholar 

  13. Wysocki A, Butler M, Shamliyan T, Kane RL (2011) Whole-body vibration therapy for osteoporosis: state of the science. Ann Intern Med 155(680-686):W206–W613

    Google Scholar 

  14. Matute-Llorente A, González-Agüero A, Gómez-Cabello A, Vicente-Rodríguez G, Casajús JA (2013) Effect of whole-body vibration therapy on health-related physical fitness in children and adolescents with disabilities: a systematic review. J Adolesc Health 54:385–396

    Article  Google Scholar 

  15. Gomez-Cabello A, Gonzalez-Aguero A, Morales S, Ara I, Casajus JA, Vicente-Rodriguez G (2014) Effects of a short-term whole body vibration intervention on bone mass and structure in elderly people. J Sci Med Sport 17:160–164

    Article  PubMed  Google Scholar 

  16. Gomez-Cabello A, Ara I, Gonzalez-Aguero A, Casajus JA, Vicente-Rodriguez G (2012) Effects of training on bone mass in older adults: a systematic review. Sports Med 42:301–325

    Article  PubMed  CAS  Google Scholar 

  17. Dalen Y, Sääf M, Nyrén S, Mattsson E, Haglund-Akerlind Y, Klefbeck B (2012) Observations of four children with severe cerebral palsy using a novel dynamic platform. A case report. Adv Physiother 14:132–139

    Article  Google Scholar 

  18. Ruck J, Chabot G, Rauch F (2010) Vibration treatment in cerebral palsy: a randomized controlled pilot study. J Musculoskelet Neuronal Interact 10:77–83

    PubMed  CAS  Google Scholar 

  19. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C (2006) Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 21:1464–1474

    Article  PubMed  Google Scholar 

  20. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19:360–369

    Article  PubMed  Google Scholar 

  21. Pitukcheewanont P, Safani D (2006) Extremely low-level, short-term mechanical stimulation increases cancellous and cortical bone density and muscle mass of children with low bone density: a pilot study. Endocrinologist 16:128–132

    Article  Google Scholar 

  22. Lam TP, Ng BK, Cheung LW, Lee KM, Qin L, Cheng JC (2012) Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls with adolescent idiopathic scoliosis: a randomized, controlled trial. Osteoporos Int 24:1623–1636

    Article  PubMed  Google Scholar 

  23. Soderpalm AC, Kroksmark AK, Magnusson P, Karlsson J, Tulinius M, Swolin-Eide D (2013) Whole body vibration therapy in patients with Duchenne muscular dystrophy - a prospective observational study. J Musculoskelet Neuronal Interact 13:13–18

    PubMed  Google Scholar 

  24. González-Agüero A, Matute-Llorente A, Gómez-Cabello A, Casajús JA, Vicente-Rodríguez G (2013) Effects of whole body vibration training on body composition in adolescents with Down syndrome. Res Dev Disabil 34:1426–1433

    Article  PubMed  Google Scholar 

  25. González-Agüero A, Vicente-Rodríguez G, Gómez-Cabello A, Ara I, Moreno LA, Casajús JA (2012) A 21-week bone deposition promoting exercise programme increases bone mass in young people with Down syndrome. Dev Med Child Neurol 54:552–556

    Article  PubMed  Google Scholar 

  26. González-Agüero A, Vicente-Rodríguez G, Gómez-Cabello A, Ara I, Moreno LA, Casajús JA (2011) A combined training intervention programme increases lean mass in youths with Down syndrome. Res Dev Disabil 32:2383–2388

    Article  PubMed  Google Scholar 

  27. Ferry B, Gavris M, Tifrea C, Serbanoiu S, Pop AC, Bembea M, Courteix D (2014) The bone tissue of children and adolescents with Down syndrome is sensitive to mechanical stress in certain skeletal locations: a 1-year physical training program study. Res Dev Disabil 35:2077–2084

    Article  PubMed  Google Scholar 

  28. Reza SM, Rasool H, Mansour S, Abdollah H (2013) Effects of calcium and training on the development of bone density in children with Down syndrome. Res Dev Disabil 34:4304–4309

    Article  PubMed  Google Scholar 

  29. González-Agüero A, Vicente-Rodríguez G, Moreno LA, Guerra-Balic M, Ara I, Casajús JA (2010) Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scand J Med Sci Sports 20:716–724

    Article  PubMed  Google Scholar 

  30. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG (2012) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg 10:28–55

    Article  PubMed  Google Scholar 

  31. Marfell-Jones M (2006) International standards for anthropometric assessment. International Society for the Advancement of Kinanthropometry, Potchefstroom

    Google Scholar 

  32. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Gracia-Marco L, Ortega FB, Jimenez-Pavon D, Rodriguez G, Castillo MJ, Vicente-Rodriguez G, Moreno LA (2012) Adiposity and bone health in Spanish adolescents. The HELENA study. Osteoporos Int 23:937–947

    Article  PubMed  CAS  Google Scholar 

  34. Farran A, Zamora R, Cervera P (2004) Tablas de composición de alimentos del CESNID. Madrid: McGraw-Hill/Interamericana de España, S.A.U. Ediciones Universidad de Barcelona

  35. Wren TA, Lee DC, Hara R, Rethlefsen SA, Kay RM, Dorey FJ, Gilsanz V (2010) Effect of high-frequency, low-magnitude vibration on bone and muscle in children with cerebral palsy. J Pediatr Orthop 30:732–738

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cohen J (1969) Statistical power analysis for the behavioural sciences. Academic Press, New York

    Google Scholar 

  37. Villarroya MA, Gonzalez-Aguero A, Moros T, Gomez-Trullen E, Casajus JA (2013) Effects of whole body vibration training on balance in adolescents with and without Down syndrome. Res Dev Disabil 34:3057–3065

    Article  PubMed  Google Scholar 

  38. Eid MA (2014) Effect of whole-body vibration training on standing balance and muscle strength in children with Down syndrome. Am J Phys Med Rehabil. http://www.ncbi.nlm.nih.gov/pubmed/25299536

  39. Matute-Llorente A, Gonzalez-Aguero A, Gomez-Cabello A, Olmedillas H, Vicente-Rodriguez G, Casajus JA (2015) Effect of whole body vibration training on bone mineral density and bone quality in adolescents with Down syndrome: a randomized controlled trial. Osteoporos Int. http://www.ncbi.nlm.nih.gov/pubmed/25994905

  40. Slatkovska L, Alibhai SM, Beyene J, Cheung AM (2010) Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int 21:1969–1980

    Article  PubMed  CAS  Google Scholar 

  41. Judex S, Donahue LR, Rubin C (2002) Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. Faseb J 16:1280–1282

    PubMed  CAS  Google Scholar 

  42. Kilebrant S, Braathen G, Emilsson R, Glansen U, Soderpalm AC, Zetterlund B, Westerberg B, Magnusson P, Swolin-Eide D (2015) Whole-body vibration therapy in children with severe motor disabilities. J Rehabil Med 47:223–228

    Article  PubMed  Google Scholar 

  43. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the help of all of the adolescents and their parents who participated in the study for their understanding and dedication to the project. Specials thanks are given to Fundación Down Zaragoza and Special Olympics Aragón for their support. This work was supported by the “Ministerio de Ciencia e Innovación” “Plan Nacional I + D + i 2009–2011 (Project DEP 2009-09183).” This project has been co-financed by “Fondo Europeo de Desarrollo Regional” (MICINN-FEDER). AML received a Grant AP12-2854 from “Ministerio de Educación Cultura y Deportes.”

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Casajús.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matute-Llorente, A., González-Agüero, A., Gómez-Cabello, A. et al. Effect of whole-body vibration training on bone mass in adolescents with and without Down syndrome: a randomized controlled trial. Osteoporos Int 27, 181–191 (2016). https://doi.org/10.1007/s00198-015-3232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3232-9

Keywords

Navigation