Skip to main content

Advertisement

Log in

Incidence and risk factors for osteoporotic vertebral fracture in low-income community-dwelling elderly: a population-based prospective cohort study in Brazil. The São Paulo Ageing & Health (SPAH) Study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We ascertained the incidence and predictors of radiographic vertebral fracture in a Brazilian elderly cohort, since no data in this field have been reported in low-income countries. This is the first population-based study to demonstrate the high frequency of vertebral fracture in elderly Latin Americans. Age, prior fracture, BMD, and bone turnover were predictors of fracture.

Introduction

Vertebral fractures are associated with increased future fracture risk and mortality. No data on incidence of osteoporotic vertebral fracture have been reported in low-income countries where the population’s aging has been faster. Thus, we sought to describe the incidence and risk factors for radiographic vertebral fracture in a longitudinal prospective Brazilian population-based elderly cohort.

Methods

707 older adults (449 women and 258 men) were evaluated with spinal radiographs obtained at baseline and after a mean follow-up of 4.3 ± 0.8 years. New vertebral fracture was defined as distinct alteration in the morphology of vertebrae resulting in higher grade of deformity on the second radiograph when compared to the baseline radiograph. Clinical questionnaire, bone mineral density (BMD), and laboratory tests were performed at baseline. Multivariate Poisson regression models were used to identify independent predictors of fracture.

Results

The age-standardized incidence of vertebral fracture was 40.3/1,000 person-years in women and 30.6/1,000 in men. In women, three models of risk factors for fracture were fitted: (1) age (relative risks (RR) 2.46, 95 % confidence interval (CI) 1.66–3.65), previous osteoporotic fracture (RR 1.65, 95 % CI 1.00–2.71), and lumbar spine BMD (RR 1.21, 95 % CI 1.03–1.41); (2) age (RR 2.25, 95 % CI 1.52–3.34) and femoral neck BMD (RR 1.42, 95 % CI 1.11–1.81); (3) age (RR 2.11, 95 % CI 1.41–3.15) and total hip BMD (RR 1.56, 95 % CI 1.21–2.0). In men, the highest quartile of cross-linked C-telopeptide (CTx) (RR 1.96, 95 % CI 0.98–3.91) and prior fracture (RR 2.10, 95 % CI 1.00–4.39) were predictors of new vertebral fracture.

Conclusions

This is the first population-based study to ascertain the incidence of vertebral fracture in elderly Latin Americans, confirming the high frequency of the disorder. Age, prior fracture, BMD, and bone turnover were predictors of the short-term incidence of vertebral fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. United Nations Department of Economic and Social Affairs. World population ageing 1950–2050. New York: United Nations; 2002. http://www.un.org/esa/population/publications/worldageing19502050/. Accessed 10 June 2013

  2. cts: The 2012 Revision Population Dataset. New York: United Nations. http://esa.un.org/unpd/wpp/index.htm. Acessed 11 June 2013

  3. 2002 Instituto Brasileiro de Geografia e Estatística - IBGE. Perfil dos idosos responsáveis pelos domicílios no Brasil. http://www.ibge.gov.br/home/estatistica/populacao/perfilidoso. Acessed 22 October 2010

  4. Instituto Brasileiro de Geografia e Estatística - IBGE. Censo 2010. http://www.ibge.gov.br/home/estatistica/populacao/censo2010. Acessed 26 October 2010

  5. Cooper C, Atkinson EJ, O'Fallon WM, Melton LJ 3rd (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227

    Article  CAS  PubMed  Google Scholar 

  6. Handa R, Ali Kalla A, Maalouf G (2008) Osteoporosis in developing countries. Best Pract Res Clin Rheumatol 22:693–708

    Article  PubMed  Google Scholar 

  7. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, Segal M, Genant HK, Cummings SR (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800

    Article  CAS  PubMed  Google Scholar 

  8. Lopes JB, Fung LK, Cha CC, Gabriel GM, Takayama L, Figueiredo CP, Pereira RM (2012) The impact of asymptomatic vertebral fractures on quality of life in older community-dwelling women: the Sao Paulo Ageing & Health Study. Clinics 67:1401–1406

    Article  PubMed Central  PubMed  Google Scholar 

  9. Hasserius R, Karlsson MK, Nilsson BE, Redlund-Johnell I, Johnell O, European Vertebral Osteoporosis S (2003) Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporosis Int 14:61–68

    Article  CAS  Google Scholar 

  10. Pongchaiyakul C, Nguyen ND, Jones G, Center JR, Eisman JA, Nguyen TV (2005) Asymptomatic vertebral deformity as a major risk factor for subsequent fractures and mortality: a long-term prospective study. J Bone Miner Res 20:1349–1355

    Article  PubMed  Google Scholar 

  11. Cauley JA, Hochberg MC, Lui LY, Palermo L, Ensrud KE, Hillier TA, Nevitt MC, Cummings SR (2007) Long-term risk of incident vertebral fractures. JAMA 298:2761–2767

    Article  CAS  PubMed  Google Scholar 

  12. European Prospective Osteoporosis Study G, Felsenberg D, Silman AJ, Lunt M, Armbrecht G, Ismail AA, Finn JD, Cockerill WC, Banzer D, Benevolenskaya LI, Bhalla A, Bruges Armas J, Cannata JB, Cooper C, Dequeker J, Eastell R, Felsch B, Gowin W, Havelka S, Hoszowski K, Jajic I, Janott J, Johnell O, Kanis JA, Kragl G, Lopes Vaz A, Lorenc R, Lyritis G, Masaryk P, Matthis C, Miazgowski T, Parisi G, Pols HA, Poor G, Raspe HH, Reid DM, Reisinger W, Schedit-Nave C, Stepan JJ, Todd CJ, Weber K, Woolf AD, Yershova OB, Reeve J, O'Neill TW (2002) Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 17:716–724

    Article  CAS  PubMed  Google Scholar 

  13. Fujiwara S, Kasagi F, Masunari N, Naito K, Suzuki G, Fukunaga M (2003) Fracture prediction from bone mineral density in Japanese men and women. J Bone Miner Res 18:1547–1553

    Article  PubMed  Google Scholar 

  14. Lopes JB, Danilevicius CF, Takayama L, Caparbo VF, Menezes PR, Scazufca M, Kuroishi ME, Pereira RM (2011) Prevalence and risk factors of radiographic vertebral fracture in Brazilian community-dwelling elderly. Osteoporosis Int 22:711–719

    Article  CAS  Google Scholar 

  15. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  CAS  PubMed  Google Scholar 

  16. Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, Silverman S (2008) Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom 11:75–91

    Article  PubMed  Google Scholar 

  17. Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, De Laet C, Jonsson B (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporosis Int 11:669–674

    Article  CAS  Google Scholar 

  18. Kaptoge S, Armbrecht G, Felsenberg D, Lunt M, O'Neill TW, Silman AJ, Reeve J, Group ES (2004) When should the doctor order a spine X-ray? Identifying vertebral fractures for osteoporosis care: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 19:1982–1993

    Article  PubMed  Google Scholar 

  19. Nevitt MC, Cummings SR, Stone KL, Palermo L, Black DM, Bauer DC, Genant HK, Hochberg MC, Ensrud KE, Hillier TA, Cauley JA (2005) Risk factors for a first-incident radiographic vertebral fracture in women > or = 65 years of age: the study of osteoporotic fractures. J Bone Miner Res 20:131–140

    Article  PubMed  Google Scholar 

  20. van der Klift M, de Laet CE, McCloskey EV, Johnell O, Kanis JA, Hofman A, Pols HA (2004) Risk factors for incident vertebral fractures in men and women: the Rotterdam Study. J Bone Miner Res 19:1172–1180

    Article  PubMed  Google Scholar 

  21. Black DM, Palermo L, Nevitt MC, Genant HK, Christensen L, Cummings SR (1999) Defining incident vertebral deformity: a prospective comparison of several approaches. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:90–101

    Article  CAS  PubMed  Google Scholar 

  22. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 11:984–996

    Article  CAS  PubMed  Google Scholar 

  23. Bow CH, Cheung E, Cheung CL, Xiao SM, Loong C, Soong C, Tan KC, Luckey MM, Cauley JA, Fujiwara S, Kung AW (2012) Ethnic difference of clinical vertebral fracture risk. Osteoporosis Int 23:879–885

    Article  CAS  Google Scholar 

  24. Lee YK, Jang S, Jang S, Lee HJ, Park C, Ha YC, Kim DY (2012) Mortality after vertebral fracture in Korea: analysis of the National Claim Registry. Osteoporosis Int 23:1859–1865

    Article  Google Scholar 

  25. Kanterewicz E, Puigoriol E, García-Barrionuevo J, del Rio L, Casellas M, Peris P, Frodos Research Group (2014) Prevalence of vertebral fractures and minor vertebral deformities evaluated by DXA-assisted vertebral fracture assessment (VFA) in a population-based study of postmenopausal women: the FRODOS study. Osteoporos Int 25:1455–64

    CAS  PubMed  Google Scholar 

  26. Johansson H, Odén A, McCloskey EV, Kanis JA (2014) Mild morphometric vertebral fractures predict vertebral fractures but not non-vertebral fractures. Osteoporos Int 25(1):235–41

    Article  CAS  PubMed  Google Scholar 

  27. Komatsu RS, Ramos LR, Szejnfeld VL (2004) Incidence of proximal femur fractures in Marilia, Brazil. J Nutr Health Aging 8:362–367

    CAS  PubMed  Google Scholar 

  28. Schwartz AV, Kelsey JL, Maggi S, Tuttleman M, Ho SC, Jonsson PV, Poor G, Sisson de Castro JA, Xu L, Matkin CC, Nelson LM, Heyse SP (1999) International variation in the incidence of hip fractures: cross-national project on osteoporosis for the World Health Organization Program for Research on Aging. Osteoporosis Int 9:242–253

    Article  CAS  Google Scholar 

  29. Castro da Rocha FA, Ribeiro AR (2003) Low incidence of hip fractures in an equatorial area. Osteoporosis Int 14:496–499

    Article  Google Scholar 

  30. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis Int 17:1726–1733

    Article  CAS  Google Scholar 

  31. Pinheiro MM, Ciconelli RM, Martini LA, Ferraz MB (2009) Clinical risk factors for osteoporotic fractures in Brazilian women and men: the Brazilian Osteoporosis Study (BRAZOS). Osteoporosis Int 20:399–408

    Article  CAS  Google Scholar 

  32. Lee SH, Khang YH, Lim KH, Kim BJ, Koh JM, Kim GS, Kim H, Cho NH (2010) Clinical risk factors for osteoporotic fracture: a population-based prospective cohort study in Korea. J Bone Miner Res 25:369–78

    Article  PubMed  Google Scholar 

  33. Samelson EJ, Hannan MT, Zhang Y, Genant HK, Felson DT, Kiel DP (2006) Incidence and risk factors for vertebral fracture in women and men: 25-year follow-up results from the population-based Framingham study. J Bone Miner Res 21:1207–1214

    Article  PubMed  Google Scholar 

  34. Jones G, White C, Nguyen T, Sambrook PN, Kelly PJ, Eisman JA (1996) Prevalent vertebral deformities: relationship to bone mineral density and spinal osteophytosis in elderly men and women. Osteoporosis Int 6:233–239

    Article  CAS  Google Scholar 

  35. O'Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ (1996) The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1018

    Article  PubMed  Google Scholar 

  36. Szulc P, Munoz F, Marchand F, Delmas PD (2001) Semiquantitative evaluation of prevalent vertebral deformities in men and their relationship with osteoporosis: the MINOS study. Osteoporosis Int 12:302–310

    Article  CAS  Google Scholar 

  37. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 15:1526–1536

    Article  CAS  PubMed  Google Scholar 

  38. Gerdhem P, Ivaska KK, Alatalo SL, Halleen JM, Hellman J, Isaksson A, Pettersson K, Vaananen HK, Akesson K, Obrant KJ (2004) Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 19:386–393

    Article  CAS  PubMed  Google Scholar 

  39. Ivaska KK, Gerdhem P, Vaananen HK, Akesson K, Obrant KJ (2010) Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res 25:393–403

    Article  CAS  PubMed  Google Scholar 

  40. Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA (2005) Bone resorption and osteoporotic fractures in elderly men: the dubbo osteoporosis epidemiology study. J Bone Miner Res 20:579–587

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We also acknowledge the work of the staff of the department of radiology at the Hospital das Clínicas, University of São Paulo.

We further cordially thank Vera Lúcia Barbosa and Maria de Lourdes Floriano for the recruitment of study subjects, including door-to-door visits; Jaqueline Couto Alvarenga for collecting blood samples from the participants; Maria Luíza Santilli for assistance in data entry; and Rogério Ruscitto do Prado, M.D, Ph.D., for helping in data statistical analysis.

Conflicts of interest

DSD received educational grant support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

LGM has no disclosures.

CPF received educational grant support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

JBL received educational grant support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

VFC has no disclosures.

LT has no disclosures.

RMO has no disclosures.

PRM has no disclosures.

RMRP has received educational grants/research support from the Fundação de Amparo e Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Ciência e Tecnologia (CNPQ), and Federico Foundation.

Role of funding source

This study was not sponsored by any pharmaceutical companies. SPAH project was supported by grants from the Fundação de Amparo e Pesquisa do Estado de São Paulo (FAPESP) #03/09313-0, #04/12694-8, and #09/15346-4; Conselho Nacional de Ciência e Tecnologia (CNPQ) #300559/2009-7 (RMRP); Federico Foundation (RMRP); and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (DSD, JBL, CPF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. R. Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domiciano, D.S., Machado, L.G., Lopes, J.B. et al. Incidence and risk factors for osteoporotic vertebral fracture in low-income community-dwelling elderly: a population-based prospective cohort study in Brazil. The São Paulo Ageing & Health (SPAH) Study. Osteoporos Int 25, 2805–2815 (2014). https://doi.org/10.1007/s00198-014-2821-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2821-3

Keywords

Navigation