Skip to main content
Log in

Association between dietary intake of flavonoid and bone mineral density in middle aged and elderly Chinese women and men

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This large cross-sectional study examined the associations of dietary intakes of total flavonoids and their subtypes with bone density in women and men. We found that greater flavonoid intake was associated with higher bone density in women but not in men.

Introduction

Studies in vitro and in animal models suggest a potential effect of flavonoids on bone health. Few studies have examined the association between the habitual intake of flavonoids and bone mineral density (BMD) in humans.

Methods

The cross-sectional study recruited 2,239 women and 1,078 men. A semiquantitative food frequency questionnaire was administered in face-to-face interviews to assess habitual dietary flavonoid intake using food composition databases. BMD was measured over the whole body (WB) and in the femoral neck (FN) and lumbar spine (LS) by dual-energy X-ray absorptiometry (DXA).

Results

After adjusting for covariates, women who consumed higher total flavonoids, and the subtypes of flavonols, flavan-3-ols, flavones, and proanthocyanidins tended to have greater BMD at the WB, LS, and FN (all P-trend < 0.05). Women in the highest (vs. the lowest) quartile of total flavonoids intake had 0.020 (1.91 %), 0.021 (2.51 %), and 0.013 (1.99 %) g/cm2 greater BMD at the whole body, LS, and FN, respectively. For the subtypes of flavonoids, the corresponding differences in BMD (in g/cm2) were 0.012–0.021 (flavan-3-ols), 0.013–0.020 (flavonols), 0.016–0.019 (flavones), and 0.014–0.016 (proanthocyanidins), respectively. A higher intake of flavonones was associated with a greater BMD at the whole body (P-trend 0.041) and the FN (P-trend 0.022). In men, there were no significant positive associations between the consumption of total flavonoids and the subclasses and BMD at any sites.

Conclusion

Dietary flavonoids intake was positively associated with BMD in women. Further large studies are needed to clarify this issue in men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, Grubb DA, Lee SJ, Reid DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71:142–151

    PubMed  CAS  Google Scholar 

  2. Chen YM, Ho SC, Woo JLF (2006) Greater fruit and vegetable intake is associated with increased bone mass among postmenopausal Chinese women. Br J Nutr 96:745–751

    Article  PubMed  CAS  Google Scholar 

  3. Liu J, Ho SC, Su YX, Chen WQ, Zhang CX, Chen YM (2009) Effect of long-term intervention of soy isoflavones on bone mineral density in women: a meta-analysis of randomized controlled trials. Bone 44:948–953

    Article  PubMed  CAS  Google Scholar 

  4. Hardcastle AC, Aucott L, Reid DM, Macdonald HM (2011) Associations between dietary flavonoid intakes and bone health in a Scottish population. J Bone Miner Res 26:941–947

    Article  PubMed  CAS  Google Scholar 

  5. Welch A, MacGregor A, Jennings A, Fairweather-Tait S, Spector T, Cassidy A (2012) Habitual flavonoid intakes are positively associated with bone mineral density in women. J Bone Miner Res 27:1872–1878

    Article  PubMed  CAS  Google Scholar 

  6. Ma DF, Qin LQ, Wang PY, Katoh R (2008) Soy isoflavone intake increases bone mineral density in the spine of menopausal women: meta-analysis of randomized controlled trials. Clin Nutr 27:57–64

    Article  PubMed  CAS  Google Scholar 

  7. Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    PubMed  CAS  Google Scholar 

  8. Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81:243S–255S

    PubMed  CAS  Google Scholar 

  9. Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    Article  PubMed  CAS  Google Scholar 

  10. Tsuji M, Yamamoto H, Sato T, Mizuha Y, Kawai Y, Taketani Y, Kato S, Terao J, Inakuma T, Takeda E (2009) Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice. J Bone Miner Metab 27:673–681

    Article  PubMed  CAS  Google Scholar 

  11. Chiba H, Uehara M, Wu J, Wang X, Masuyama R, Suzuki K, Kanazawa K, Ishimi Y (2003) Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr 133:1892–1897

    PubMed  CAS  Google Scholar 

  12. Pang WY, Wang XL, Mok SK, Lai WP, Chow HK, Leung PC, Yao XS, Wong MS (2010) Naringin improves bone properties in ovariectomized mice and exerts oestrogen-like activities in rat osteoblast-like (UMR-106) cells. Br J Pharmacol 159:1693–1703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Ho SC, Woo J, Lam S, Chen Y, Sham A, Lau J (2003) Soy protein consumption and bone mass in early postmenopausal Chinese women. Osteoporos Int 14:835–842

    Article  PubMed  CAS  Google Scholar 

  14. Nagata C, Shimizu H, Takami R, Hayashi M, Takeda N, Yasuda K (2002) Soy product intake and serum isoflavonoid and estradiol concentrations in relation to bone mineral density in postmenopausal Japanese women. Osteoporos Int 13:200–204

    Article  PubMed  CAS  Google Scholar 

  15. Zhang CX, Ho SC (2009) Validity and reproducibility of a food frequency questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr 18:240–250

    PubMed  CAS  Google Scholar 

  16. Yang YX, Wang GY, Pan XC (2002) China food composition. Peking University Medical Press, Beijing

    Google Scholar 

  17. USDA (2013) USDA database for the flavonoid content of selected foods, release 3.1. Agricultural Research Service, Nutrient Data Laboratory, Beltsville

    Google Scholar 

  18. USDA (2004) USDA database for the proanthocyanidin content of selected foods. Agricultural Research Service, Nutrient Data Laboratory, Beltsville

    Google Scholar 

  19. Chan SG, Murphy PA, Ho SC, Kreiger N, Darlington G, So EK, Chong PY (2009) Isoflavonoid content of Hong Kong soy foods. J Agric Food Chem 57:5386–5390

    Article  PubMed  CAS  Google Scholar 

  20. Zhang ZQ, Deng J, He LP, Ling WH, Su YX, Chen YM (2013) Comparison of various anthropometric and body fat indices in identifying cardiometabolic disturbances in Chinese men and women. PLoS One 8:e70893

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228S, discussion 1229S-1231S

    PubMed  CAS  Google Scholar 

  22. Ko CH, Lau KM, Choy WY, Leung PC (2009) Effects of tea catechins, epigallocatechin, gallocatechin, and gallocatechin gallate, on bone metabolism. J Agric Food Chem 57:7293–7297

    Article  PubMed  CAS  Google Scholar 

  23. Devine A, Hodgson JM, Dick IM, Prince RL (2007) Tea drinking is associated with benefits on bone density in older women. Am J Clin Nutr 86:1243–1247

    PubMed  CAS  Google Scholar 

  24. Johnell O, Gullberg B, Kanis JA et al (1995) Risk factors for hip fracture in European women: the MEDOS Study. Mediterranean Osteoporosis Study. J Bone Miner Res 10:1802–1815

    Article  PubMed  CAS  Google Scholar 

  25. Shen CL, Yeh JK, Cao JJ, Wang JS (2009) Green tea and bone metabolism. Nutr Res 29:437–456

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Wattel A, Kamel S, Prouillet C, Petit JP, Lorget F, Offord E, Brazier M (2004) Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J Cell Biochem 92:285–295

    Article  PubMed  CAS  Google Scholar 

  27. Yang L, Takai H, Utsunomiya T, Li X, Li Z, Wang Z, Wang S, Sasaki Y, Yamamoto H, Ogata Y (2010) Kaempferol stimulates bone sialoprotein gene transcription and new bone formation. J Cell Biochem 110:1342–1355

    Article  PubMed  CAS  Google Scholar 

  28. Prouillet C, Maziere JC, Maziere C, Wattel A, Brazier M, Kamel S (2004) Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol 67:1307–1313

    Article  PubMed  CAS  Google Scholar 

  29. Hsu YL, Chang JK, Tsai CH, Chien TT, Kuo PL (2007) Myricetin induces human osteoblast differentiation through bone morphogenetic protein-2/p38 mitogen-activated protein kinase pathway. Biochem Pharmacol 73:504–514

    Article  PubMed  CAS  Google Scholar 

  30. Lee JW, Ahn JY, Hasegawa S, Cha BY, Yonezawa T, Nagai K, Seo HJ, Jeon WB, Woo JT (2009) Inhibitory effect of luteolin on osteoclast differentiation and function. Cytotechnology 61:125–134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Bandyopadhyay S, Lion JM, Mentaverri R, Ricupero DA, Kamel S, Romero JR, Chattopadhyay N (2006) Attenuation of osteoclastogenesis and osteoclast function by apigenin. Biochem Pharmacol 72:184–197

    Article  PubMed  CAS  Google Scholar 

  32. Kim TH, Jung JW, Ha BG, Hong JM, Park EK, Kim HJ, Kim SY (2011) The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss. J Nutr Biochem 22:8–15

    Article  PubMed  CAS  Google Scholar 

  33. Goto T, Hagiwara K, Shirai N, Yoshida K, Hagiwara H (2014) Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. Cytotechnology

  34. Tanabe S, Santos J, La VD, Howell AB, Grenier D (2011) A-type cranberry proanthocyanidins inhibit the RANKL-dependent differentiation and function of human osteoclasts. Molecules 16:2365–2374

    Article  PubMed  CAS  Google Scholar 

  35. Ishikawa M, Maki K, Tofani I, Kimura K, Kimura M (2005) Grape seed proanthocyanidins extract promotes bone formation in rat’s mandibular condyle. Eur J Oral Sci 113:47–52

    Article  PubMed  CAS  Google Scholar 

  36. Mandadi K, Ramirez M, Jayaprakasha GK, Faraji B, Lihono M, Deyhim F, Patil BS (2009) Citrus bioactive compounds improve bone quality and plasma antioxidant activity in orchidectomized rats. Phytomedicine 16:513–520

    Article  PubMed  CAS  Google Scholar 

  37. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, Black DM (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112:281–289

    Article  PubMed  CAS  Google Scholar 

  38. Johnell O, Kanis JA, Oden A et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  PubMed  Google Scholar 

  39. Miksicek RJ (1995) Estrogenic flavonoids: structural requirements for biological activity. Proc Soc Exp Biol Med 208:44–50

    Article  PubMed  CAS  Google Scholar 

  40. van der Woude H, Ter Veld MG, Jacobs N, van der Saag PT, Murk AJ, Rietjens IM (2005) The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Mol Nutr Food Res 49:763–771

    Article  PubMed  Google Scholar 

  41. Goodin MG, Fertuck KC, Zacharewski TR, Rosengren RJ (2002) Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro. Toxicol Sci 69:354–361

    Article  PubMed  CAS  Google Scholar 

  42. Geleijnse JM, Witteman JC, Launer LJ, Lamberts SW, Pols HA (2000) Tea and coronary heart disease: protection through estrogen-like activity? Arch Intern Med 160:3328–3329

    Article  PubMed  CAS  Google Scholar 

  43. Chang MC, Bailey JW, Collins JL (1994) Dietary tannins from cowpeas and tea transiently alter apparent calcium absorption but not absorption and utilization of protein in rats. J Nutr 124:283–288

    PubMed  CAS  Google Scholar 

  44. Mei J, Yeung SS, Kung AW (2001) High dietary phytoestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. J Clin Endocrinol Metab 86:5217–5221

    Article  PubMed  CAS  Google Scholar 

  45. Koh WP, Wu AH, Wang R, Ang LW, Heng D, Yuan JM, Yu MC (2009) Gender-specific associations between soy and risk of hip fracture in the Singapore Chinese Health Study. Am J Epidemiol 170:901–909

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by the National Natural Science Foundation of China (No. 81273049), the 5010 Program for Clinical Researches by the Sun Yat-sen University (No. 2007032), and Danone Institute China Diet Nutrition Research & Communication Grant in 2012. We thank Ke Guan, Wen-qi Shi, Ya-bing Wen, Juan Deng, Zong-qiu Chen, and other team members for their contribution in the data collection.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y.-x. Su or Y.-m. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zq., He, Lp., Liu, Yh. et al. Association between dietary intake of flavonoid and bone mineral density in middle aged and elderly Chinese women and men. Osteoporos Int 25, 2417–2425 (2014). https://doi.org/10.1007/s00198-014-2763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2763-9

Keywords

Navigation